Effect of Growing Size of Interaction Neighbors on the Evolution of Cooperation in Spatial Snowdrift Game

ZHANG Juan-Juan, WANG Juan, SUN Shi-Wen, WANG Li, WANG Zhen, XIA Cheng-Yi

Communications in Theoretical Physics ›› 2012, Vol. 57 ›› Issue (4) : 541-546.

PDF(1680 KB)
Welcome to visit Communications in Theoretical Physics, May 22, 2025
PDF(1680 KB)
Communications in Theoretical Physics ›› 2012, Vol. 57 ›› Issue (4) : 541-546.
General

Effect of Growing Size of Interaction Neighbors on the Evolution of Cooperation in Spatial Snowdrift Game

Author information +
History +

Abstract

In this paper, we study the influence of the size of interaction neighbors (k) on the evolution of cooperation in the spatial snowdrift game. At first, we consider the effects of noise K and cost-to-benefit ratio r, the simulation results indicate that the evolution of cooperation depends on the combined action of noise and cost-to-benefit ratio. For a lower r, the cooperators are multitudinous and the cooperation frequency ultimately increases to 1 as the increase of noise. However, for a higher r, the defectors account for the majority of the game and dominate the game if the noise is large enough. Then we mainly investigate how k influences the evolution of cooperation by varying the noise in detail. We find that the frequency of cooperators is closely related to the size of neighborhood and cost-to-benefit ratio r. In the case of lower r, the augmentation of k plays no positive role in promoting the cooperation as compared with that of k=4, while for higher r the cooperation is improved for a growing size of neighborhood. At last, based on the above discussions, we explore the cluster-forming mechanism among the cooperators. The current results are beneficial to further understand the evolution of cooperation in many natural, social and biological systems.

Key words

spatial snowdrift game / interaction neighborhood / emergence of cooperation / regular lattice

Cite this article

Download Citations
ZHANG Juan-Juan, WANG Juan, SUN Shi-Wen, et al. Effect of Growing Size of Interaction Neighbors on the Evolution of Cooperation in Spatial Snowdrift Game[J]. Communications in Theoretical Physics, 2012, 57(4): 541-546

References

[1] K. Sigmund, The Evolution of Cooperation, Oxford University Press, Oxford (1993).
[2] C. Darwin, The Origin of Species, Harward University Press, Cambridge, MA (1859) (Reprinted, 1964).
[3] H. Gintis, Game Theory Evolving, Princeton University Press, Princeton, NJ (2000).
[4] M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life, Harvard Universtiy Press, Cambridge (2006).
[5] J. S. Maynard and E. Szathmary, The Major Transitions in Evolution, Oxford University Press, Oxford (1995).
[6] K. G. Binmore, Playing Fair: Game Theory and the Social Contract, MIT Press, Cambridge (1994).
[7] M. A. Nowak and R. M. May, Nature (London) 359 (1992) 826.
[8] C. Hauert and M. Doebeli, Nature (London) 428 (2004) 643.
[9] S. Boccalettia, V. Latorab, Y. Moreno, M. Chavezf, and D. U. Hwang, Phys. Rep. 424 (2006) 175.
[10] F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95 (2005) 098104.
[11] F. C. Santos, J. M. Pacheco, and T. Lenaerts, Proc. Natl. Acad. Sci. USA 103 (2006) 3490.
[12] Z. H. Rong, X. Li, and X. F. Wang, Phys. Rev. E 76 (2007) 027101.
[13] W. D. Hamilton, J. Theor. Bio. 7 (1964) 1.
[14] M. A. Nowak and K. Sigmund, Nature (London) 393 (1998) 573.
[15] F. Baker and H. Rachlin, Beh. Pro. 2-3 (2002) 211.
[16] G. Szabó, J. Vukov, and A. Szolnoki, Phys. Rev. E 72 (2005) 047107.
[17] J. Vukov, G. Szabó, and A. Szolnoki, Phys. Rev. E 73 (2006) 067103.
[18] W. B. Du, X. B. Cao, M. B. Hu, and H. X. Yang, Europhys. Lett. 87 (2009) 60004.
[19] G. Szabó and C. Hauert, Phys. Rev. E 66 (2002) 062903.
[20] Z. Wang, Z. J. Xu, J. H. Huang, and L. Z. Zhang, Chin. Phys. B 19 (2010) 100204.
[21] Z. Wang, Z. J. Xu, and L. Z. Zhang, Chin. Phys. B 19 (2010) 110201.
[22] F. Feng, T. Wu, and L. Wang, Phys. Rev. E 79 (2009) 036101.
[23] R. Alonso-Sanz and M. Martín, Int. J. Mod. Phys. C 17 (2006) 841.
[24] M. H. Vainstein, A. T. C. Silva, and J. J. Arenzon, J. Theor. Biol. 244 (2007) 722.
[25] E. A. Sicardi, H. Fort, M. H. Vainstein, and J. J. Arenzon, J. Theor. Biol. 256 (2009) 240.
[26] S. Meloni, A. Buscarino, L. Fortuna, M. Frasca, J. Gómez-Gardetildeñes, V. Latora, and Y. Moreno, Phys. Rev. E 79 (2009) 067101.
[27] C. Y. Xia, Z. Q. Ma, Y. L. Wang, J. S. Wang, and Z. Q. Chen, Physica A 390 (2011) 4602.
[28] C. Y. Xia, J. Zhao, J. Wang, Y. L. Wang, and H. Zhang, Phys. Scrip. 84 (2011) 025802.
[29] J. Poncela, J. Gómez-Gardetildeñes, L. M. Floría, and Y. Moreno, New J. Phys. 9 (2007) 184.
[30] Z. Wang and M. Perc, Phys. Rev. E 82 (2010) 021115.
[31] H. F. Zhang, R. R. Liu, Z. Wang, and B. H. Wang, Europhys. Lett. 94 (2011) 18006.
[32] Z. Wang, W. B. Du, X. B. Cao, and L. Z. Zhang, Physica A {390} (2011) 1234.
[33] Z. Wang, A. Murks, W. B. Du, Z. H. Rong, and M. Perc, J. Theor. Biol. 277 (2011) 19.
[34] L. H. Shang, M. J. Zhang, and Y. Q. Yang, Commun. Theor. Phys. 52 (2009) 411.
[35] Z. H. Rong and Z. X. Wu, Europhys. Lett. 87 (2009) 30001.
[36] W. B. Du, X. B. Cao, and M. B. Hu, Physica A 388 (2009) 5005.
[37] Y. Chen, S. M. Qin, L. Yu, and S. L. Zhang, Phys. Rev. E 77 (2008) 032103.
[38] W. B. Du, X. B Cao, M. B. Hu, and W. X. Wang, Physica A 388 (2009) 2215.
[39] Z. X. Wu, X. J. Xu, Z. G. Huang, S. J. Wang, and Y. H. Wang, Phys. Rev. E 74 (2006) 021107.
[40] C. Y. Xia, J. J. Zhang, Y. L. Wang, and J. S. Wang, Commun. Theor. Phys. 56 (2011) 638.
[41] G. Szabó and G. Fáth, Phys. Rep. 4-6 (2007) 97.
[42] C. P. Roca, J. A. Cuesta, and A. Sánchez, Phys. Life Rev. 6 (2009) 208.

Funding

Supported by the National Natural Science Foundation of China under Grant Nos. 60904063 and 60673046, Tianjin municipal Natural Science Foundation under Grant No. 11JCYBJC06600 and the Development Fund of Science and Technology for the Higher Education in Tianjin under Grant No. 20090813

PDF(1680 KB)

1703

Accesses

0

Citation

Detail

Sections
Recommended

/