Casimir Effect at Finite Temperature in the Presence of One Fractal Extra Compactified Dimension

CHENG Hong-Bo

Communications in Theoretical Physics ›› 2012, Vol. 58 ›› Issue (02) : 229-236.

PDF(332 KB)
Welcome to visit Communications in Theoretical Physics, May 21, 2025
PDF(332 KB)
Communications in Theoretical Physics ›› 2012, Vol. 58 ›› Issue (02) : 229-236.
General

Casimir Effect at Finite Temperature in the Presence of One Fractal Extra Compactified Dimension

Author information +
History +

Abstract

We discuss the Casimir effect for massless scalar fields subject to the Dirichlet boundary conditions on the parallel plates at finite temperature in the presence of one fractal extra compactified dimension. We obtain the Casimir energy density with the help of the regularization of multiple zeta function with one arbitrary exponent and further the renormalized Casimir energy density involving the thermal corrections. It is found that when the temperature is sufficiently high, the sign of the Casimir energy remains negative no matter how great the scale dimension δ is within its allowed region. We derive and calculate the Casimir force between the parallel plates affected by the fractal additional compactified dimension and surrounding temperature. The stronger thermal influence leads the force to be stronger. The nature of the Casimir force keeps attractive.

Key words

Casimir effect / Kaluza-Klein model

Cite this article

Download Citations
CHENG Hong-Bo. Casimir Effect at Finite Temperature in the Presence of One Fractal Extra Compactified Dimension[J]. Communications in Theoretical Physics, 2012, 58(02): 229-236

References

[1] T. Kaluza, Sitz. Preuss. Akad. Wiss. Phys. Math. K1 1 (1921) 966
[2] O. Klein, Z. Phys. 37 (1926) 895
[3] J. Ambjorn, J. Jurkiewicz, and R. Loll, Phys. Rev. D 72 (2005) 064014.
[4] O. Lauscher and M. Reuter, J. High Energy Phys. 0510 (2005) 050.
[5] D. Benedetti, Phys. Rev. Lett. 102 (2009) 111303.
[6] G. Calcagni, Phys. Rev. Lett. 104 (2010) 251301.
[7] G. Calcagni, Phys. Lett. B 697 (2011) 251.
[8] I.I. Smolyaninov, Phys. Rev. D 65 (2002) 047503.
[9] H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51 (1948) 793.
[10] T.H. Boyer, Phys. Rev. 174 (1968) 1764.
[11] G. Plunien, B. Muller, and W. Greiner, Phys. Rep. 134 (1986) 87.
[12] J. Ambjorn and S. Wolfram, Ann. Phys. (N.Y.) 147 (1983) 1.
[13] E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bysenko, and S. Zerbini, Zeta Regularization Techniques with Applications, World Scientific, Singapore (1994).
[14] E. Elizalde, Ten Physical Applications of Spectral Zeta Functions, Springer-Verlag, Berlin (1995).
[15] V.M. Mostepanenko and N.N. Trunov, The Casimir Effect and its Applications, Oxford University Press, Oxford (1997).
[16] K.A. Milton, The Casimir Effect, Physical Manifestation of Zero-Point Energy, World Scientific, Singapore (2001).
[17] M. Bordag, U. Mohideen, and V.M. Mostepanenko, Phys. Rep. 353 (2001) 1.
[18] K. Kirsten, Spectral Function in Mathematics and Physics, Chapman and Hall, London (2002).
[19] U. Mohideen and A. Roy, Phys. Rev. Lett. 81 (1998) 4549.
[20] A. Roy, C. Lin, and U. Mohideen, Phys. Rev. D 60 (1999) 111101.
[21] G.L. Klimchitskaya, U. Mohideen, and V.M. Mostepanenko, Rev. Mod. Phys. 81 (2009) 1827.
[22] K. Poppenhaeger, S. Hossenfelder, S. Hofmann, and M. Bleicher, Phys. Lett. B 582 (2004) 1.
[23] H. Cheng, Chin. Phys. Lett. 22 (2005) 2190.
[24] H. Cheng, Mod. Phys. Lett. A 21 (2006) 1957.
[25] H. Cheng, Phys. Lett. B 643 (2006) 311.
[26] R.M. Cavalcanti, Phys. Rev. D 69 (2004) 065015.
[27] M.P. Hertzberg, R.L. Jaffe, M. Kardar, and A. Scardicchio, Phys. Rev. Lett. 95 (2005) 250402.
[28] A. Edery, Phys. Rev. D 75 (2007) 105012.
[29] A. Edery, N. Graham, and I. MacDonald, Phys. Rev. D 79 (2009) 125018.
[30] H. Cheng, Phys. Lett. B 668 (2008) 72.
[31] K. Kirsten and S.A. Fulling, Phys. Lett. B 671 (2009) 179.
[32] K. Kirsten and S.A. Fulling, Phys. Rev. D 79 (2009) 065019.
[33] K. Milton and J. Wagner, Phys. Rev. D 80 (2009) 125028.
[34] E. Elizalde, S.D. Odintsov, and A.A. Saharian, Phys. Rev. D 79 (2009) 065023.
[35] E. Elizalde, S.D. Odintsov, and A.A. Saharian, Phys. Rev. D 83 (2011) 105023.
[36] H. Yu, N.F. Svaiter, and L.H. Ford, Phys. Rev. D 80 (2009) 124019.
[37] G. Fucci and K. Kirsten, J. High Energy Phys. 1103 (2011) 016.
[38] A. Flachi and D. Toms, Nucl. Phys. B 610 (2001) 144.
[39] A.A. Saharian and M.R. Setare, Phys. Lett. B 552 (2003) 119.
[40] E. Elizalde, S. Nojiri, S.D. Odintsov, and S. Ogushi, Phys. Rev. D 67 (2003) 063515.
[41] J. Garriga and A. Pomarol, Phys. Lett. B 560 (2003) 91.
[42] M. Frank, I. Turan, and L. Ziegler, Phys. Rev. D 76 (2007) 015008.
[43] R. Linares, H.A. Morales-Tecotl, and O. Pedraza, Phys. Rev. D 77 (2008) 066012.
[44] M. Frank, N. Saad, and I. Turan, hep-th/0807.0443 (2008).
[45] H. Cheng, Chin. Phys. Lett. 27 (2010) 031101.
[46] H. Cheng, Commun. Theor. Phys. 53 (2010) 1125.
[47] M.P. Hertzberg, R.L. Jaffe, M. Kardar, and A. Scardicchio, Phys. Rev. D 76 (2007) 045016.
[48] A. Flachi and T. Tanaka, Phys. Rev. D 80 (2009) 124022.
[49] K. Nouicer and Y. Sabri, Phys. Rev. D 80 (2009) 086013.
[50] L.P. Teo, J. High Energy Phys. 1010 (2010) 019.
[51] R. Linares, H.A. Morales-Tecotl, and O. Pedraza, Phys. Rev. D 81 (2010) 126013.
[52] L. Hadasz, et al., Phys. Rev. D 62 (2000) 025011.
[53] H. Cheng and X. Li, Chin. Phys. Lett. 18 (2001) 1163.
[54] F. Darabi and M.R. Setare, J. Math. Phys. 47 (2006) 032501.
[55] V.K. Oikonomou and N.D. Tracas, Int. J. Mod. Phys. A 25 (2010) 5935.
[56] S. Bellucci and A.A. Saharian, Phys. Rev. D 80 (2009) 105003.
[57] H. Cheng, arXiv: 1106.4610.
[58] H. Cheng, J. Phys. A: Math. Gen. 35 (2002) 2205.
[59] H. Cheng, Chin. Phys. Lett. 22 (2005) 3032.
[60] L.P. Teo, Phys. Lett. B 672 (2009) 190.
[61] L.P. Teo, Nucl. Phys. B 819 (2009) 431.
[62] L.P. Teo, J. High Energy Phys. 0906 (2009) 076.
[63] H. Cheng, Chin. Phys. C 35 (2011) 1084.
[64] M. Rypestol and I. Brevik, New J. Phys. 12 (2010) 013022; M. Rypestol and I. Brevik, Physica Scripta 82 (2010) 035101.
[65] H. Cheng, Phys. Rev. D 82 (2010) 045005.
[66] A. Erdas, Phys. Rev. D 83 (2011) 025005.
[67] M. Frank, I. Turan, and L. Ziegler, Phys. Rev. D 76 (2007) 015008.

Funding

Supported by National Natural Science Foundation of China under Grant No. 10875043 and is partly by the Shanghai Research Foundation under Grant No. 07dz22020

PDF(332 KB)

1370

Accesses

0

Citation

Detail

Sections
Recommended

/