Quantum Correlations in Heisenberg XY Chain

ZHU Yin-Yan, ZHANG Yong

Communications in Theoretical Physics ›› 2013, Vol. 59 ›› Issue (04) : 407-410.

PDF(913 KB)
Welcome to visit Communications in Theoretical Physics, May 23, 2025
PDF(913 KB)
Communications in Theoretical Physics ›› 2013, Vol. 59 ›› Issue (04) : 407-410.
General

Quantum Correlations in Heisenberg XY Chain

Author information +
History +

Abstract

Quantum correlations measured by quantum discord (QD), measurement-induced distance (MID), and geometric measure of quantum discord (GMQD) in two-qubit Heisenberg XY spin chain are investigated. The effects of DM interaction and anisotropic on the three correlations are considered. Characteristics of various correlation measures for the two-qubit states are compared. The increasing Dz increases QD, MID and GMQD monotonously while the increasing anisotropy both increases and decreases QD and GMQD. The three quantum correlations are always existent at very high temperature. MID is always larger than QD, but there is no definite ordering between QD and GMQD.

Key words

quantum discord / measurement-induced distance / geometric measure of quantum discord

Cite this article

Download Citations
ZHU Yin-Yan, ZHANG Yong. Quantum Correlations in Heisenberg XY Chain[J]. Communications in Theoretical Physics, 2013, 59(04): 407-410

References

[1] L. Henderson and V. Vedral, J. Phys. A: Math. Gen. 34 (2001) 6899.

[2] H. Ollivier and W.H. Zurek, Phys. Rev. Lett. 88 (2001) 017901.

[3] W.H. Zurek, Phys. Rev. A 67 (2003) 012320.

[4] M.S. Sarandy, Phys. Rev. A 80 (2009) 022108-1-9.

[5] T. Werlang, et al., Phys. Rev. Lett. 105 (2010) 095702.

[6] A. Datta, Phys. Rev. A 80 (2009) 052304.

[7] A. Shabani and D.A. Lidar, Phys. Rev. Lett. 102 (2009) 100402.

[8] M. Piani, M. Christandl, et al., Phys. Rev. Lett. 102 (2009) 250503.

[9] A. Datta, A. Shaji, et al., Phys. Rev. Lett. 100 (2008) 050502.

[10] J. Cui and H. Fan, J. Phys. A: Math. Theor. 43 (2010) 045305.

[11] Davide Girolami and Gerardo Adesso, Phys. Rev. A 83 (2011) 052108.

[12] Borivoje Daki?, Vlatko Vedral, et al., Phys. Rev. Lett. 105 (2001) 190502.

[13] Shunlong Luo and Shuangshuang Fu, Phys. Rev. A 82 (2010) 034302.

[14] Shunlong Luo, Phys. Rev. A 77 (2008) 022301.

[15] M.S. Sarandy, Phys. Rev. A 80 (2009) 022108.

[16] J. Maziero, H.C. Guzman, M.S. Sarandy, et al., Phys. Rev. A 82 (2010) 012106.

[17] T. Yu and J.H. Eberly, Opt. Commun. 283 (2010) 676. [RefAutoNo]M. Ali, A.R.P. Rau, and G. Alber, Phys. Rev. A 81 (2010) 042105.

[19] G. Passante, O. Moussa, and R. Laflamme, Phys. Rev. A 85 (2012) 032325.

[20] Aharon Brodutch and Kavan Modi, Quantum Information & Computation 12 (2012) 0721.

Funding

Supported by Chinese Universities Scientific Fund under Grant No. BUPT2011RC070, the National Natural Science Foundation of China under Grant No. 61178010

PDF(913 KB)

1261

Accesses

0

Citation

Detail

Sections
Recommended

/