Longitudinal Structure Function FL from Charm Structure Function F2c

B. Rezaei, G.R. Boroun

Communications in Theoretical Physics ›› 2013, Vol. 59 ›› Issue (04) : 462-466.

PDF(698 KB)
Welcome to visit Communications in Theoretical Physics, May 21, 2025
PDF(698 KB)
Communications in Theoretical Physics ›› 2013, Vol. 59 ›› Issue (04) : 462-466.
Physics of Elementary Particles and Fields

Longitudinal Structure Function FL from Charm Structure Function F2c

Author information +
History +

Abstract

We predict the effect of the charm structure function on the longitudinal structure function at small x. In NLO analysis we find that the hard Pomeron behavior gives a good description of FL and Fkc (k=2,L) at small x values. We conclude that a direct relation between FL ∝ F2c would provide useful information on how to measure longitudinal structure function at high Q2 values. Having checked that this model gives a good description of the data, when compared with other models.

Key words

charm structure function / gluon distribution / quantum chromodynamics / small-x

Cite this article

Download Citations
B. Rezaei, G.R. Boroun. Longitudinal Structure Function FL from Charm Structure Function F2c[J]. Communications in Theoretical Physics, 2013, 59(04): 462-466

References

[1] A.M. Cooper-Sarkar, et al., Z. Phys. C 39 (1988) 281; A.M. Cooper-Sarkar and R.C.E. Devenish, Acta Phys. Polon. B 34 (2003) 2911.

[2] D.I. Kazakov, et al., Phys. Rev. Lett. 65 (1990) 1535.

[3] J.L. Miramontes, J. Sanchez Guillen, and E. Zas, Phys. Rev. D 35 (1987) 863.

[4] C. Lopez and F.J. Yndurain, Nucl. Phys. B 171 (1980) 231; 183 (1981) 157; A.V. Kotikov, Phys. Rev. D 49 (1994) 5746; A.V. Kotikov, Phys. Atom. Nucl. 59 (1996) 2137.

[5] A. Vogt, arXiv:hep-ph:9601352v2 (1996).

[6] H.L. Lai and W.K. Tung, Z. Phys. C 74 (1997) 463.

[7] A. Donnachie and P.V. Landshoff, Phys. Lett. B 470 (1999) 243.

[8] N.Ya. Ivanov, Nucl. Phys. B 814 (2009) 142; N.Ya. Ivanov and B.A. Kniehl, Eur. Phys. J. C 59 (2009) 647.

[9] F. Carvalho, et al., Phys. Rev. C 79 (2009) 035211.

[10] S.J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, Phys. Lett. B 93 (1980) 451; S.J. Brodsky, C. Peterson, and N. Sakai, Phys. Rev. D 23 (1981) 2745.

[11] F.D. Aaron, et al., [H1 Collaboration], Eur. Phys. J. C 71 (2011) 1579.

[12] F.D. Aaron, et al., [H1 Collaboration], Eur. Phys. J. C 65 (2010) 89.

[13] M. Gluk, E. Reya, and A. Vogt, Z. Phys. C 67 (1995) 433; Eur. Phys. J. C 5 (1998) 461.

[14] V.N. Baier, et al., Sov. Phys. JETP 23 (1966) 104; V.G. Zima, Yad. Fiz. 16 (1972) 1051; V.M. Budnev, et al., Phys. Rept. 15 (1974) 181.

[15] E. Witten, Nucl. Phys. B 104 (1976) 445; J.P. Leveille and T.J. Weiler, Nucl. Phys. B 147 (1979) 147; V.A. Novikov, et al., Nucl. Phys. B 136 (1978) 125.

[16] E. Witten, Nucl. Phys. B 104 (1976) 445; J.P. Leveille and T.J. Weiler, Nucl. Phys. B 147 (1979) 147; V.A. Novikov, et al., Nucl. Phys. B 136 (1978) 125.

[17] E. Laenen, S. Riemersma, J. Smith, and W.L.van Neerven, Nucl. Phys. B 392 (1993) 162.

[18] A.Y. Illarionov, B.A. Kniehl, and A.V. Kotikov, Phys. Lett. B 663 (2008) 66.

[19] S. Catani, M. Ciafaloni, and F. Hautmann, Preprint CERN-Th.6398/92, in Proceeding of the Workshop on Physics at HERA Hamburg, Vol. 2 (1991) p. 690; S. Catani and F. Hautmann, Nucl. Phys. B 427 (1994) 475; S. Riemersma, J. Smith, and W.L.van Neerven, Phys. Lett. B 347 (1995) 143.

[20] M. Gluck, P. Jimenez-Delgado, and E. Reya, Eur. Phys. J. C 53 (2008) 355.

[21] N.N. Nikolaev and V.R. Zoller, Phys. Lett. B 509 (2001) 283.
PDF(698 KB)

1269

Accesses

0

Citation

Detail

Sections
Recommended

/