Spontaneous Fission Barriers Based on a Generalized Liquid Drop Model

GUO Shu-Qing, BAO Xiao-Jun, LI Jun-Qing, ZHANG Hong-Fei

Communications in Theoretical Physics ›› 2014, Vol. 61 ›› Issue (05) : 629-635.

PDF(1516 KB)
Welcome to visit Communications in Theoretical Physics, May 22, 2025
PDF(1516 KB)
Communications in Theoretical Physics ›› 2014, Vol. 61 ›› Issue (05) : 629-635.
Nuclear Physics

Spontaneous Fission Barriers Based on a Generalized Liquid Drop Model

Author information +
History +

Abstract

The barrier against the spontaneous fission has been determined within the Generalized Liquid Drop Model (GLDM) including the mass and charge asymmetry, and the proximity energy. The shell correction of the spherical parent nucleus is calculated by using the Strutinsky method, and the empirical shape-dependent shell correction is employed during the deformation process. A quasi-molecular shape sequence has been defined to describe the whole process from one-body shape to two-body shape system, and a two-touching-ellipsoid is adopted when the superdeformed one-body system reaches the rupture point. On these bases the spontaneous fission barriers are systematically studied for nuclei from 230Th to 249Cm for different possible exiting channels with the different mass and charge asymmetries. The double, and triple bumps are found in the fission potential energy in this region, which roughly agree with the experimental results. It is found that at around Sn-like fragment the outer fission barriers are lower, while the partner of the Sn-like fragment is in the range near 108Ru where the ground-state mass is lowered by allowing axially symmetric shapes. The preferable fission channels are distinctly pronounced, which should be corresponding to the fragment mass distributions.

Key words

spontaneous fission / generalized liquid drop model / shell correction

Cite this article

Download Citations
GUO Shu-Qing, BAO Xiao-Jun, LI Jun-Qing, et al. Spontaneous Fission Barriers Based on a Generalized Liquid Drop Model[J]. Communications in Theoretical Physics, 2014, 61(05): 629-635

References

[1] L. Meitner and O.R. Frisch, Nature (London) 143 (1939) 239.

[2] N. Bohr and J.A. Wheeler, Phys. Rev. 56 (1939) 426.

[3] W.J. Swiatecki, Phys. Rev. 100 (1955) 937.

[4] V.M. Strutinsky, Nucl. Phys. A 95 (1967) 420.

[5] V.M. Strutinsky, Nucl. Phys. A 122 (1968) 1.

[6] P. Möller, D.G. Madland, A.J. Sierk, and A. Iwamoto, Nature (London) 409 (2001) 785.

[7] P. Möller, A.J. Sierk, and A. Iwamoto, Phys. Rev. Lett. 92 (2004) 072501.

[8] P. Möller, J.R. Nix, W.D. Myers, and W.J. Swiatecki, At. Data Nucl. Data Tables 59 (1995) 185.

[9] A. Mamdouh, J.M. Pearson, M. Rayet, and F. Tondeur, Nucl. Phys. A 644 (1998) 389.

[10] A. Staszczak, A. Baran, J. Dobaczewski, and W. Nazarewicz, Phys. Rev. C 80 (2009) 014309.

[11] J.L. Egido and L.M. Robledo, Phys. Rev. Lett. 85 (2000) 1198.

[12] M. Warda and J.L. Egido, Phys. Rev. C 86 (2012) 014322.

[13] B.N. Lu, E.G. Zhao, and S.G. Zhou, Phys. Rev. C 85 (2012) 011301(R).

[14] V. Blum, J. Maruhn, P.G. Reinhard, and W. Greiner, Phys. Lett. B 323 (1994) 262.

[15] W. Zhang, S.S. Zhang, S.Q. Zhang, and J. Meng, Chin. Phys. Lett. 20 (2003) 1694.

[16] H. Abusara, A.V. Afanasjev, and P. Ring, Phys. Rev. C 82 (2010) 044303.

[17] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72 (2000) 733.

[18] Y. T. Oganessian, F.S. Abdullin, P.D. Bailey, et al., Phys. Rev. Lett. 104 (2010) 142502.

[19] P. Möller, A.J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson, H. Uhrenholt, and S. Aberg, Phys. Rev. C 79 (2009) 064304.

[20] J.C. Pei, W. Nazarewicz, J.A. Sheikh, and A.K. Kerman, Phys. Rev. Lett. 102 (2009) 192501.

[21] Z.G. Gan, et al., Eur. Phys. J. A 10 (2001) 21.

[22] Z.G. Gan, et al., Eur. Phys. J. A 20 (2001) 385.

[23] Z.Y. Zhang, Z.G. Gan, et al., Chin. Phys. Lett. 29 (2012) 012502.

[24] A. Krasznahorkay, et al., Phys. Rev. Lett. 80 (1998) 2073.

[25] M. Kowal and J. Skalski, Phys. Rev. C 87 (2013) 044308.

[26] T. Ichikawa, P. Möller, and A.J. Sierk, Phys. Rev. C 87 (2013) 054326.

[27] G. Royer and B. Remaud, Nucl. Phys. A 444 (1985) 477.

[28] G. Royer and K. Zbiri, Nucl. Phys. A 697 (2002) 630.

[29] X.J. Bao, H.F. Zhang, et al., Nucl. Phys. A 906 (2013) 1.

[30] G. Royer, M. Jaffré, and D. Moreau, Phys. Rev. C 86 (2012) 044326.

[31] G. Royer, J. Phys. G 26 (2000) 1149.

[32] H.F. Zhang and G. Royer, Phys. Rev. C 77 (2008) 054318.

[33] J.M. Dong and H.F. Zhang, Phys. Rev. C 79 (2009) 054330.

[34] G. Royer and R. Moustabchir, Nucl. Phys. A 683 (2001) 182.

[35] C. Bonilla and G. Royer, Acta Phys. Hung. New Ser.: Heavy Ion Phys. 25 (2006) 11.

[36] G. Royer and C. Piller, J. Phys. G 18 (1992) 1805.

[37] J. Blocki, J. Randrup, W.J. Swiatecki, and C.F. Tsang, Ann. Phys. 105 (1977) 427.

[38] W.D. Myers, Droplet Model of Atomic Nuclei, Plenum, New York (1977).

[39] V.M. Strutinsky and F.A. Ivanjuk, Nucl. Phys. A 255 (1975) 405.

[40] N. Wang, M. Liu, and X.Z. Wu, Phys. Rev. C 81 (2010) 044322.

[41] S. Cwoik, J. Dudek, et al., Comput. Phys. Commun. 46 (1987) 379.

[42] N. Wang and M. Liu, Phys. Rev. C 81 (2010) 067302.

[43] W.D. Myers and W.J. Swiatecki, Nucl. Phys. A 601 (1996) 141.

[44] G. Royer and C. Bonilla, J. Rad. Nucl. Chem. 272 (2007) 237.

[45] R. Capote, et al., Nucl. Data Sheets 110 (2009) 3107.

[46] G. Bellia, A. Del Zoppo, E. Migneco, R.C. Barna, and D. De Pasquale, Phys. Rev. C 20 (1979) 1059.

[47] M. Sin, R. Capote, A. Ventura, M. Herman, and P. Oblozinsky, Phys. Rev. C 74 (2006) 014608.

[48] M. Csatlos, A. Krasznahorkay, et al., Phys. Lett. B 615 (2005) 175.

[49] P. Möller, R. Bengtsson, et al., Phys. Rev. Lett. 97 (2006) 162502.

[50] V.V. Pashkevich, Nucl. Phys. A 133 (1969) 400.

Funding

Supported by the National Natural Science Foundation of China under Grant Nos. 11175074, 11120101005, 11105035, and 10805061, the Fundamental Research Funds for the Central Universities under Grant No. lzujbky-2012-5, the Knowledge Innovation Project of the Chinese Academy of Sciences under Grant No. KJCX2-EW-N01

PDF(1516 KB)

1384

Accesses

0

Citation

Detail

Sections
Recommended

/