Simultaneous Effects of External Electric Field and Conduction Band Nonparabolicity on Optical Properties of a GaAs Quantum Dot Embedded at the Center of a GaAlAs Nano-Wire

Gh. Safarpour, M. A. Izadi, M. Novzari, E. Niknam, M. M. Golshan

Communications in Theoretical Physics ›› 2014, Vol. 61 ›› Issue (06) : 765-772.

PDF(3177 KB)
Welcome to visit Communications in Theoretical Physics, May 23, 2025
PDF(3177 KB)
Communications in Theoretical Physics ›› 2014, Vol. 61 ›› Issue (06) : 765-772.
Condensed Matter: Electronic Structure, Electrical, Magnetic, and Optical Properties

Simultaneous Effects of External Electric Field and Conduction Band Nonparabolicity on Optical Properties of a GaAs Quantum Dot Embedded at the Center of a GaAlAs Nano-Wire

Author information +
History +

Abstract

An investigation of the optical properties of a GaAs spherical quantum dot which is located at the center of a Ga1-xAlxAs cylindrical nano-wire has been performed in the presence of an external electric field. The band nonparabolicity effect is also considered using the energy dependent effective mass approximation. The energy eigenvalues and corresponding wave functions are calculated by finite difference approximation and the reliability of calculated wave functions is checked by computing orthogonality. Using computed energy eigenvalues and wave functions, the linear, third-order nonlinear and total optical absorption coefficients and refractive index changes are examined in detail. It is found that (i) Presence of electric field causes both blue and red shifts in absorption spectrum; (ii) The absorption coefficients shift toward lower energies by taking into account the conduction band nonparabolicity; (iii) For large values of electric field the effect of conduction band nonparabolicity is less dominant and parabolic band is estimated correctly; (iv) In the presence of electric field and conduction band nonparabolicity the nonlinear term of absorption coefficient rapidly increases by increasing incident optical intensity. In other words, the saturation in optical spectrum occurs at lower incident optical intensities.

Key words

nonlinear optics / conduction band nonparabolicity / electric field / spherical quantum dot

Cite this article

Download Citations
Gh. Safarpour, M. A. Izadi, M. Novzari, et al. Simultaneous Effects of External Electric Field and Conduction Band Nonparabolicity on Optical Properties of a GaAs Quantum Dot Embedded at the Center of a GaAlAs Nano-Wire[J]. Communications in Theoretical Physics, 2014, 61(06): 765-772

References

[1] S. Davatolhagh, A.R. Jafari, and M.R.K. Vahdani, Superlattices Microstruct. 51 (2012) 62.

[2] Y. Yakar, Bekir Cakir, and A. Ozmen, Commun. Theor. Phys. 53 (2010) 1185.

[3] G. Rezaei, B. Vaseghi, and N.A. Doostimotlagh, Commun. Theor. Phys. 57 (2012) 485.

[4] E. Sadeghi, Superlattices Microstruct. 50 (2011) 331.

[5] Wen-Fang Xie, Commun. Theor. Phys. 51 (2009) 923.

[6] M. Choubani, R. Ben Mahrsia, L. Bouzaiene, and H. Maaref, J. Lumin. 144 (2013) 258.

[7] Wen-Fang Xie, Commun. Theor. Phys. 52 (2009) 155.

[8] D. Indjin, P. Harrison, R.W. Kelsall, and Z. Ikonic, J. Appl. Phys. 91 (2002) 9019.

[9] M. Heiss, et al., Nature Mater 12 (2013) 439.

[10] M. Sahin and K. Koksal, Semicond. Sci. Technol. 27 (2012) 125011.

[11] E.C. Niculescu, L.M. Burileanu, A. Radu, and A. Lupascu, J. Lumin. 131 (2011) 1113.

[12] B. Cakir, Y. Yakar, and A. Ozmen, J. Lumin. 132 (2012) 2659.

[13] S. Liang, W.F. Xie, H.A. Sarkisyan, A.V. Meliksetyan, and H. Shen, Superlattices Microstruct. 51 (2012) 868.

[14] M.T. Borgstrom, V. Zwiller, E. Muller, and A. Imamoglu, Nano Lett. 5 (2005) 1439.

[15] M.H. M. van Weert, N. Akopian, U. Perinetti, M.P. van Kouwen, R.E. Algra, M.A. Verheijen, E.P.A.M. Bakkers, L.P. Kouwenhoven, and V. Zwiller, Nano Lett. 9 (2009) 1989.

[16] M.T. Bjork, C. Thelander, A.E. Hansen, L.E. Jensen, M.W. Larsson, L. Reine Wallenberg, and L. Samuelson, Nano Lett. 4 (2004) 1621.

[17] A. Tribu, G. Sallen, T. Aichele, R. Andre, J.P. Poizat, C. Bougerol, S. Tatarenko, and K. Kheng, Nano Lett. 8 (2008) 4326.

[18] Gh. Safarpour, M. Barati, M. Moradi, S. Davatolhagh, and A. Zamani, Superlattices Microstruct. 52 (2012) 387.

[19] Gh. Safarpour and M. Barati, J. Lumin. 137 (2013) 98.

[20] L. Lu, W. Xie, and Z. Shu, Physica B 406 (2011) 3735.

[21] U. Yesilgul, F. Ungan, E. Kasapoglu, H. Sari, and I. Sokmen, Superlattices Microstruct. 50 (2011) 400.

[22] U. Zulicke and D. Csontos, Curr. Appl. Phys. \bf8 (2008) 237.

[23] T. Chen, W. Xie, and S. Liang, J. Lumin. 139 (2013) 64.

[24] Xiying Ma, Weilin Shi, and Baojun Li, Semicond. Sci. Technol. 21 (2006) 713.

[25] M. Narayanan and A. John Peter, Superlattices Microstruct. 51 (2012) 486.

[26] C. Bose and C. Chakraborty, Solid State Electron. 41 (1997) 1383.

[27] G. Rezaei, B. Vaseghi, and M. Sadri, Physica B 406 (2011) 4596.

[28] G. Rezaei and N.A. Doostimotlagh, Physica E 44 (2012) 833.

[29] C. Bose, K. Midya, and M.K. Bose, Physica E 33 (2006) 116.

[30] J. Planelles and M. Royo, J. Appl. Phys. 102 (2007) 094304.

[31] A.M. Elabsy and P. Csavinszky, Int. J. Quantum Chem: Quantum Chemistry Symposium 30 (1996) 1719.

[32] J.D. Cooper, A. Valavanis, Z. Ikoni, P. Harrison, and J.E. Cunningham, J. Appl. Phys. 108 (2010) 113109.

[33] E. Herbert Li, Physica E 5 (2000) 215.

[34] I. Wayan Sudiarta and D.J. Wallace Geldart, J. Phys. A: Math. Theor. 40 (2007) 1885.

[35] G.M. Amiraliyev, A. Math. Comput. 162 (2005) 1023.

[36] E. Ozturk, H. Sari, and I. Sokmen, Solid State Commun. 132 (2004) 497.

[37] G. Rezaei, M.R.K. Vahdani, and B. Vaseghi, Physica B 406 (2011) 1488.

[38] M.R.K. Vahdani and G. Rezaei, Phys. Lett. A 373 (2009) 3079.

[39] M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, and I. Sokmen, J. Lumin. 132 (2012) 901.

[40] W. Xie, Physica B 405 (2010) 34.

[41] B. Cakir, Y. Yakar, A. Ozmen, M. Ozgur Sezer, and M. Sahin, Superlattices Microstruct. 47 (2010) 556.

[42] M.K. Bose, K. Midya, and C. Bose, J. Appl. Phys. 101 (2007) 054315.

[43] G. Rezaei, N.A. Doostimotlagh, and B. Vaseghi, Commun. Theor. Phys. 56 (2011) 377.
PDF(3177 KB)

1304

Accesses

0

Citation

Detail

Sections
Recommended

/