Superactivation of Measurement-Induced Nonlocality

CHANG Li-Na, LUO Shun-Long

Communications in Theoretical Physics ›› 2014, Vol. 62 ›› Issue (06) : 809-812.

PDF(172 KB)
Welcome to visit Communications in Theoretical Physics, May 22, 2025
PDF(172 KB)
Communications in Theoretical Physics ›› 2014, Vol. 62 ›› Issue (06) : 809-812.
General

Superactivation of Measurement-Induced Nonlocality

Author information +
History +

Abstract

Nonlocality, as an essential, subtle and intriguing aspect of nature, has many different facets and manifestations. In quantum information theory, nonlocality is usually defined, characterized and quantified in the framework of entanglement and violation of certain Bell inequalities. An exciting phenomenon concerning entanglement-related nonlocality is the superactivation, symbolized as "0+0>0", which means that two systems, while do not possess nonlocality individually by themselves, may exhibit nonlocality when combined together in an independent fashion. In this work, we explore nonlocality from the measurement perspective and reveal the superactivation of measurement-induced nonlocality (MIN): When two bipartite states with vanishing MIN are combined together, the tensorizing state may possess non-zero MIN. Implications and applications are discussed.

Key words

nonloality / measurement-induced nonlocality / quantum measurement / superactivation

Cite this article

Download Citations
CHANG Li-Na, LUO Shun-Long. Superactivation of Measurement-Induced Nonlocality[J]. Communications in Theoretical Physics, 2014, 62(06): 809-812

References

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47 (1935) 777.

[2] Y. Aharonov and D. Bohm, Phys. Rev. 115 (1959) 485; ibid. Phys. Rev. 123 (1961) 1511.

[3] J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge Univ. Press, Cambridge (1988).

[4] P.G. Bergmann, V.de. Sabbata, and J.N. Goldberg, Classical and Quantum Nonlocality, World Scientific, Singapore (2000).

[5] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81 (2009) 865.

[6] R.F. Werner and M.M. Wolf, Quantum Inf. Camput. 1 (2001) 1.

[7] S.J. Jones, H.M. Wiseman, and A.C. Doherty, Phys. Rev. A 76 (2007) 052116.

[8] S. Luo and S. Fu, Phys. Rev. Lett. 106 (2011) 120401.

[9] B. Daki?, V. Vedral, and ?. Brukner, Phys. Rev. Lett. 105 (2010) 190502.

[10] S. Luo and S. Fu, Phys. Rev. A 82 (2010) 034302.

[11] B. Daki?, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, ?. Brukner, and P. Walther, Nature Phys. 8 (2012) 666.

[12] P. Horodecki, M. Horodecki, and R. Horodecki, Phys. Rev. Lett. 82 (1999) 1056.

[13] P.W. Shor, J.A. Smolin, and A.V. Thapliyal, Phys. Rev. Lett. 90 (2003) 107901.

[14] G. Smith and J. Yard, Science 321 (2008) 1812.

[15] T.S. Cubitt, J. Chen, and A.W. Harrow, IEEE Trans. Inform. Theory 57 (2011) 8114.

[16] J. Chen, T.S. Cubitt, A.W. Harrow, and G. Smith, Phys. Rev. Lett. 107 (2011) 250504.

[17] M. Piani, S. Gharibian, G. Adesso, J. Calsamiglia, P. Horodecki, and A. Winter, Phys. Rev. Lett. 106 (2011) 220403.

[18] M. Navascués and T. Vértesi, Phys. Rev. Lett. 106 (2011) 060403.

[19] D. Cavalcanti, R. Rabelo, and V. Scarani, Phys. Rev. Lett. 108 (2012) 040402.

[20] F.G.S.L. Brandaö, J. Oppenheim, and S. Strelchuk, Phys. Rev. Lett. 108 (2012) 040501.

[21] W. K?obus, W. Laskowski, M. Markiewicz, and A. Grudka, Phys. Rev. A 86 (2012) 020302.

[22] F. Kaneda, R. Shimizu, S. Ishizaka, Y. Mitsumori, H. Kosaka, and K. Edamatsu, arXiv:1111.6170 (2011).

[23] X. Jia, J. Zhang, Y. Wang, Y. Zhao, C. Xie, and K. Peng, Phys. Rev. Lett. 108 (2012) 190501.

[24] C. Palazuelos, Phys. Rev. Lett. 109 (2012) 190401.

[25] D. Cavalcanti, A. Acín, N. Brunner, and T. Vértesi, Phys. Rev. A 87 (2013) 042104.

[26] We thank Dr. Yu Guo for Communication Leading to This Observation.

[27] G. Lüders, Ann. Phys. (Leipzig) 8 (1951) 322 (for an English translation, see arXiv:quant-ph/0403007 or Ann. Phys. (Leipzig) 15 (2006) (63).

[28] D.P. DiVincenzo, M. Horodecki, D.W. Leung, J.A. Smolin, and B.M. Terhal, Phys. Rev. Lett. 92 (2004) 067902.

[29] J.A. Smolin and J. Oppenheim, Phys. Rev. Lett. 96 (2006) 081302.

[30] R. König, R. Renner, A. Bariska, and U. Maurer, Phys. Rev. Lett. 98 (2007) 140502.

[31] S. Wu, U.V. Poulsen, and K. Molmer, Phys. Rev. A 80 (2009) 032319.

[32] A. Datta and S. Gharibian, Phys. Rev. A 79 (2009) 042325.

[33] F. Dupuis, J. Florjanczyk, P. Hayden, and D. Leung, arXiv:1011.1612 (2010).

[34] S. Boixo, L. Aolita, D. Cavalcanti, K. Modi, and A. Winter, Inter. J. Quantum Inform. 9 (2011) 1643.

[35] S.M. Giampaolo, A. Streltsov, W. Roga, D. Bruß, and F. Illuminati, Phys. Rev. A 87 (2013) 012313.

Funding

Supported by the National Natural Science Foundation of China under Grant Nos. 11375259, 61134008, and the National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences under Grant No. Y029152K51

PDF(172 KB)

1235

Accesses

0

Citation

Detail

Sections
Recommended

/