Traveling Wave Solutions for Nonlinear Differential-Difference Equations of Rational Types

İsmail Aslan

Communications in Theoretical Physics ›› 2016, Vol. 65 ›› Issue (01) : 39-45.

PDF(228 KB)
Welcome to visit Communications in Theoretical Physics, June 5, 2025
PDF(228 KB)
Communications in Theoretical Physics ›› 2016, Vol. 65 ›› Issue (01) : 39-45.
General

Traveling Wave Solutions for Nonlinear Differential-Difference Equations of Rational Types

  • ?smail Aslan
Author information +
History +

Abstract

Differential-difference equations are considered to be hybrid systems because the spatial variable n is discrete while the time t is usually kept continuous.Although a considerable amount of research has been carried out in the field of nonlinear differential-difference equations,the majority of the results deal with polynomial types.Limited research has been reported regarding such equations of rational type.In this paper we present an adaptation of the(G'/G)-expansion method to solve nonlinear rational differential-difference equations.The procedure is demonstrated using two distinct equations.Our approach allows one to construct three types of exact traveling wave solutions(hyperbolic,trigonometric,and rational) by means of the simplified form of the auxiliary equation method with reduced parameters.Our analysis leads to analytic solutions in terms of topological solitons and singular periodic functions as well.

Key words

differential-difference equations / (G'/G)-expansion method / exact solutions / traveling wave solutions

Cite this article

Download Citations
İsmail Aslan. Traveling Wave Solutions for Nonlinear Differential-Difference Equations of Rational Types[J]. Communications in Theoretical Physics, 2016, 65(01): 39-45

References

[1] E.Fermi,J.Pasta,and S.Ulam,Collected Papers of Enrico Fermi,University of Chicago Press,Chicago(1965).

[2] M.Toda,Theory of Nonlinear Lattices,Springer-Verlag,New York(1989).

[3] K.Narita,Prog.Theor.Phys.86(1991) 817.

[4] K.Narita,Chaos,Solitons & Fractals 13(2002) 1121.

[5] Y.V.Kartashov,V.A.Vysloukh,A.Malomed Boris,and L.Torner,Rev.Mod.Phys.83(2011) 247.

[6] P.G.Drazin and R.S.Johnson,Solitons:An Introduction,Cambridge University Press,Cambridge(1996).

[7] S.M.Zheng,Nonlinear Evolution Equations,Chapman/Hall,Florida(2004).

[8] X.B.Hu and W.X.Ma,Phys.Lett.A 293(2002) 161.

[9] S.K.Liu,Z.T.Fu,Z.G.Wang,and S.D.Liu,Commun.Theor.Phys.49(2008) 1155.

[10] A.Saadatmandi and M.Dehghan,Comput.Math.Appl.59(2010) 2996.

[11] C.Q.Dai,J.P.Meng,and J.F.Zhang,Commun.Theor.Phys.43(2005) 471.

[12] S.D.Zhu,Int.J.Nonliear.Sci.8(2007) 461.

[13] F.Xie,M.Jia,and H.Zhao,Chaos,Solitons & Fractals 33(2007) 1791.

[14] P.Yang,Y.Chen,and Z.B.Li,Appl.Math.Comput.210(2009) 362.

[15] S.D.Zhu,Y.M.Chu,and S.L.Qiu,Comput.Math.Appl.58(2009) 2398.

[16] W.Zhen,Comput.Phys.Commun.180(2009) 1104.

[17] Z.Y.Zhang,J.Zhong,S.S.Dou,J.Liu,D.Peng,and T.Gao,Rom.J.Phys.65(2013) 1155.

[18] Z.Y.Zhang,Z.H.Liu,X.J.Miao,and Y.Z.Chen,Phys.Lett.A 375(2011) 1275.

[19] Z.Y.Zhang,F.L.Xia,and X.P.Li,Pramana 80(2013) 41.

[20] Z.Y.Zhang,X.Y Gan,and D.M.Yu,Z.Naturforsch.A 66(2011) 721.

[21] Z.Y.Zhang,Y.X.Li,Z.H.Liu,and X.J.Miao,Commun.Nonlinear Sci.Numer.Simulat.16(2011) 3097.

[22] Z.Y.Zhang,Y.H.Zhang,X.Y.Gan,and D.M.Yu,Z.Naturforsch.Teil A 67(2012) 167.

[23] Z.Y.Zhang,Z.H.Liu,X.J.Miao,and Y.Z.Chen,Appl.Math.Comput.216(2010) 3064.

[24] Z.Y.Zhang,Rom.J.Phys.In Press.

[25] Z.Y.Zhang,X.Y Gan,D.M.Yu,Y.H.Zhang,and X.P.Li,Commun.Theor.Phys.57(2012) 764.

[26] M.Wang,X.Li,and J.Zhang,Phys.Lett.A 372(2008) 417.

[27] S.Zhang,L.Dong,J.M.Ba,and Y.N.Sun,Phys.Lett.A 373(2009) 905.

[28] J.Zhang,X.Wei,and Y.Lu,Phys.Lett.A 372(2008) 3653.

[29] T.Özi?and ?.Aslan,Commun.Theor.Phys.51(2009) 577.

[30] K.A.Gepreel and S.Omran,Chin.Phys.B 21(2012) 110204.

[31] ?.Aslan,Appl.Math.Comput.217(2010) 937.

[32] X.J.Miao and Z.Y.Zhang,Commun.Nonlinear Sci.Numer.Simulat.16(2011) 4259.

[33] Z.Y.Zhang,J.Zhong,S.S.Dou,J.Liu,D.Peng,and T.Gao,Rom.J.Phys.58(2013) 749.

[34] Z.Y.Zhang,J.Zhong,S.S.Dou,J.Liu,D.Peng,and T.Gao,Rom.J.Phys.58(2013) 766.

[35] Z.Y.Zhang,Turk.J.Phys.37(2013) 259.

[36] Z.Y.Zhang,J.H.Huang,J.Zhong,S.S.Dou,J.Liu,D.Peng,and T.Gao,Pramana 82(2014) 1011.
PDF(228 KB)

896

Accesses

0

Citation

Detail

Sections
Recommended

/