Dynamical Change of Quantum Fisher Information of Cavity-Reservoir Systems

Jiang Huang, Qin Xie

Communications in Theoretical Physics ›› 2016, Vol. 65 ›› Issue (04) : 453-459.

PDF(1828 KB)
Welcome to visit Communications in Theoretical Physics, May 23, 2025
PDF(1828 KB)
Communications in Theoretical Physics ›› 2016, Vol. 65 ›› Issue (04) : 453-459.
General

Dynamical Change of Quantum Fisher Information of Cavity-Reservoir Systems

  • Jiang Huang, Qin Xie
Author information +
History +

Abstract

We study the quantum Fisher information (QFI) dynamics of the phase parameter in the enlarged cavity-reservoir systems at zero temperature under two situations of large N limit and non-Markovian environment, respectively. We find an important relation that the total quantities of QFI of the cavity and reservoir are equal to unit during the dynamical evolution. The lost QFI of the cavity transfers to its corresponding reservoir with the same quantities simultaneously. Moreover, we also find that the detuning parameter and non-Markovian effect are two significant factors to affect the preservation of QFI.

Key words

dynamical change / quantum Fisher information / cavity-reservoir systems

Cite this article

Download Citations
Jiang Huang, Qin Xie. Dynamical Change of Quantum Fisher Information of Cavity-Reservoir Systems[J]. Communications in Theoretical Physics, 2016, 65(04): 453-459

References

[1] A.W. Chin, S.F. Huelga, and M.B. Plenio, Phys. Rev. Lett. 109 (2012) 233601.

[2] V. Giovanetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96 (2006) 010401.

[3] S.F. Huelga, C. Macchiavello, T. Pllizzari, A.K. Ekert, M.B. Plenio, and J.I. Cirac, Phys. Rev. Lett. 79 (1997) 3865.

[4] J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P.R. Hemmer, A. Yacoby, R. Walsworth, and M.D. Lukin, Nat. Phys. 4 (2000) 810.

[5] U.L. Andersen, Nat. Photon. 7 (2013) 589.

[6] X.M. Lu, Z. Sun, X.G. Wang, S.L. Luo, and C.H. Oh, Phys. Rev. A 87 (2013) 050302.

[7] W. Zhong, J. Liu, J. Ma, and X.G. Wang, Chin. Phys. B 23 (2014) 060302.

[8] Y. Yao, X. Xiao, L. Ge, X.G. Wang, and C.P. Sun, Phys. Rev. A 89 (2014) 042336.

[9] W.F. Liu, J. Ma, and X.G. Wang, J. Phys. A:Math. Theor. 46 (2013) 045302.

[10] Q.S. Tan, Y.X. Huang, X.L. Yin, L.M. Kuang, and X.G. Wang, Phys. Rev. A 87 (2013) 032102.

[11] N. Li and S.L. Luo, Phys. Rev. A 88 (2013) 014301.

[12] S. Alipour and A.T. Rezakhani, Phys. Rev. A 91 (2015) 042104.

[13] J. Zhang, Phys. Rev. A 89 (2014) 032128.

[14] Q. Zheng, Y. Yao, and X.W. Xu, Commun. Theor. Phys. 63 (2015) 279.

[15] X. Hao, N.H. Tong, and S.Q. Zhu, J. Phys. A:Math. Theor. 46 (2013) 355302.

[16] M. Stefano, Phys. Rev. A 75 (2007) 012330.

[17] S.L. Braunstein and C.M. Caves, Phys. Rev. Lett. 72 (1994) 3439.

[18] Q. Zheng, L. Ge, Y. Yao, and Q.J. Zhi, Phys. Rev. A 91 (2015) 033805.

[19] Y.L. Li, X. Xiao, and Y. Yao, Phys. Rev. A 91 (2015) 052105.

[20] K. Berrada, Phys. Rev. A 88 (2013) 035806.

[21] X.M. Lu, X.G. Wang, and C.P. Sun, Phys. Rev. A 82 (2010) 042103.

[22] H.T. Song, S.L. Luo, and Y. Hong, Phys. Rev. A 91 (2015) 042110.

[23] C.E. Lopez, G. Romero, F. Lastra, E. Solano, and J.C. Retamal, Phys. Rev. Lett. 101 (2008) 080503.

[24] A. Mazhar and J. Huang, Chin. Phys. Lett. 31 (2014) 110301.

[25] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Informatin, Cambridge University Press, Cambridge (2002).

[26] Z. Sun, J. Ma, X.M. Lu, and X. Wang, Phys. Rev. A 82 (2010) 022306.

[27] H.P. Breue and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, Cambridge (2003).

[28] B.J. Dalton, S.M. Barnett, and B.M. Garraway, Phys. Rev. A 64 (2001) 053813.

Funding

Supported by the National Natural Science Foundation of China under Grant No. 11374096 and the Natural Science Foundation of Guangdong Province under Grant No. 2015A030310354 and the Projection of Enhancing School with Innovation of Guangdong Ocean University under Grant Nos. GDOU2014050251 and GDOU2014050252

PDF(1828 KB)

747

Accesses

0

Citation

Detail

Sections
Recommended

/