Single Photon Scattering Properties in Coupled-Resonator Waveguide Coupling with a Nanocavity Interacting with an External Mirror

Mu-Tian Cheng, Wei-Wei Zong, Gen-Long Ye, Xiao-San Ma, Jia-Yan Zhang, Bing Wang

Communications in Theoretical Physics ›› 2016, Vol. 65 ›› Issue (06) : 767-771.

PDF(1035 KB)
Welcome to visit Communications in Theoretical Physics, May 24, 2025
PDF(1035 KB)
Communications in Theoretical Physics ›› 2016, Vol. 65 ›› Issue (06) : 767-771.
Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics

Single Photon Scattering Properties in Coupled-Resonator Waveguide Coupling with a Nanocavity Interacting with an External Mirror

  • Mu-Tian Cheng, Wei-Wei Zong, Gen-Long Ye, Xiao-San Ma, Jia-Yan Zhang, Bing Wang
Author information +
History +

Abstract

We investigate theoretically single photon transport properties in coupled-resonator waveguide coupling with a nanocavity interacting with an external mirror. By using the discrete coordinates approach, transmission and reflection amplitudes of the propagating single photon in the waveguide are obtained. The influence of the coupling strength between the nanocavity and the external mirror on the single photon scattering spectra is discussed. We also extend the results to the waveguide with linear and quadratic form dispersion relations.

Key words

coupled-resonator waveguide / single photon / scattering

Cite this article

Download Citations
Mu-Tian Cheng, Wei-Wei Zong, Gen-Long Ye, Xiao-San Ma, Jia-Yan Zhang, Bing Wang. Single Photon Scattering Properties in Coupled-Resonator Waveguide Coupling with a Nanocavity Interacting with an External Mirror[J]. Communications in Theoretical Physics, 2016, 65(06): 767-771

References

[1] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vu?kovi?, Opt. Express 16 (2008) 12154.

[2] W. Chen, G.Y. Chen, and Y.N. Chen, Opt. Express 18 (2010) 10360.

[3] N.C. Kim, J.B. Li, Z.J. Yang, Z.H. Hao, and Q.Q. Wang, Appl. Phys. Lett. 97 (2010) 061110.

[4] N.C. Kim and M.C. Ko, Plasmonics 10 (2015) 605.

[5] N.C. Kim, M.C. Ko, and Q.Q. Wang, Plasmonics 10 (2015) 611.

[6] J.B. Li, M.D. He, X.J. Wang, X.F. Peng, and L.Q. Chen, Chin. Phys. B 23 (2014) 067302.

[7] M.T. Cheng, and Y.Y. Song, Opt. Lett. 37 (2012) 978.

[8] J. Li and R. Yu, Opt. Express. 19 (2011) 20991.

[9] D.E. Chang, A.S. Sørensen, E.A. Demler, and M.D. Lukin, Nat. Phys. 3 (2007) 807.

[10] J.Q. Liao, J.F. Huang, Y.X. Liu, L.M. Kuang, and C.P. Sun, Phys. Rev. A 80 (2009) 014301.

[11] L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, and F. Nori, Phys. Rev. Lett. 101 (2008) 100501.

[12] L. Zhou, L.P. Yang, Y. Li, and C.P. Sun, Phys. Rev. Lett. 111 (2013) 103604.

[13] J. Lu, L. Zhou, L.M. Kuang, and F. Nori, Phys. Rev. A 89 (2014) 013805.

[14] D. O’Shea, C. Junge, J. Vozi, and A. Rauschenbeutel, Phys. Rev. Lett. 111 (2013) 193601.

[15] A.D. Greentree, C. Tahan, J.H. Cole, and L.C.L. Hollen-berg, Nat. Phys. 2 (2006) 856.

[16] M.T. Cheng, X.S. Ma, M.T. Ding, Y.Q. Luo, and G.X. Zhao, Phys. Rev. A 85 (2012) 053840.

[17] Z.Y. Zhang, Y.L. Dong, S.L. Zhang, and S.Q. Zhu, Opt. Express 21 (2013) 20786.

[18] T. Zhou, X. Zang, Y. Liu, J. Chen, and Y. Zhu, J. Opt. Soc. Am. B 30 (2013) 978.

[19] T. Zhou, X. Zang, and J. Chen, Chin. Phys. Lett. 31 (2014) 070301.

[20] P. Kolchin, R.F. Oulton, and X. Zhang, Phys. Rev. Lett. 106 (2011) 113601.

[21] D. Roy, Phys. Rev. Lett. 106 (2011) 053601.

[22] W.B. Yan and H. Fan, Sci. Rep. 4 (2014) 4820.

[23] H. Zheng, D.J. Gauthier, and H.U. Baranger, Phys. Rev. Lett. 111 (2013) 090502.

[24] X.F. Zang, T. Zhou, B. Cai, and Y.M. Zhu, J. Phys. B 46 (2013) 145504.

[25] C.H. Yan,W.Z. Jia, and L.F.Wei, Phys. Rev. A 89 (2014) 033819.

[26] W.B. Yan and H. Fan, Phys. Rev. A 90 (2014) 053807.

[27] D. Witthaut and A.S. Sørensen, N. J. Phys. 12 (2010) 043052.

[28] C.H. Yan, L.F. Wei, W.Z. Jia, and J.T. Shen, Phys. Rev. A 84 (2011) 045801.

[29] J.T. Shen and S. Fan, Phys. Rev. A 79 (2009) 023837.

[30] J.T. Shen and S. Fan, Phys. Rev. A 79 (2009) 023838.

[31] M.T. Cheng, Y.Q. Luo, Y.Y. Song, and G.X. Zhao, Opt. Commun. 283 (2010) 3721.

[32] X. Zang, T. Zhou, B. Cai, and Y. Zhu, J. Opt. Soc. Am. B 30 (2013) 1135.

[33] T. Zhou, X. Zang, Y. Liu, L. Zheng, and T. Gao, J. Mod. Opt. 62 (2015) 32.

[34] A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, Phys. Rev. Lett. 110 (2013) 013601.

[35] C.H. Yan and L.F. Wei, Opt. Exp. 23 (2015) 10374.

[36] S.M. Hein, F. Schulze, A. Carmele, and A. Knorr, Phys. Rev. Lett. 113 (2014) 027401.

[37] S.M. Hein, F. Schulze, A. Carmele, and A. Knorr, Phys. Rev. A 91 (2015) 052321.

Funding

Supported by the National Natural Science Foundation of China under Grant Nos. 11105001 and 61472282, the Anhui Provincial Natural Science Foundation under Grant Nos. 1408085QA22, 1608085MA09, and 1508085MF129.

PDF(1035 KB)

Accesses

Citation

Detail

Sections
Recommended

/