Spatio-Temporal Deformation of Kink-Breather to the (2+1)-Dimensional Potential Boiti-Leon-Manna-Pempinelli Equation

Li-Li Song, Zhi-Lin Pu, Zheng-De Dai

Communications in Theoretical Physics ›› 2017, Vol. 67 ›› Issue (05) : 493-497.

PDF(2629 KB)
Welcome to visit Communications in Theoretical Physics, May 22, 2025
PDF(2629 KB)
Communications in Theoretical Physics ›› 2017, Vol. 67 ›› Issue (05) : 493-497.
General

Spatio-Temporal Deformation of Kink-Breather to the (2+1)-Dimensional Potential Boiti-Leon-Manna-Pempinelli Equation

  • Li-Li Song1, Zhi-Lin Pu1, Zheng-De Dai2
Author information +
History +

Abstract

In the paper, the rational breather soliton and kink solitary wave solution of the (2+1)-dimensional PBLMP equation are obtained by adopting Hirota bilinear method and selecting different test functions. Furthermore, it has been found that the fusion and degeneration of the kink solitary wave occur when interaction between the rational breather soliton and the kink solitary wave happens. These phenomena are very helpful in researching soliton dynamical complexity in the higher dimensional systems.

Key words

the (2+1)-dimensional PBLMP equation / the Hirota bilinear method / the kink solitary wave / the rational breather soliton / fusion / degeneration

Cite this article

Download Citations
Li-Li Song, Zhi-Lin Pu, Zheng-De Dai. Spatio-Temporal Deformation of Kink-Breather to the (2+1)-Dimensional Potential Boiti-Leon-Manna-Pempinelli Equation[J]. Communications in Theoretical Physics, 2017, 67(05): 493-497

References

[1] K. Kimiaki and W. Miki, Prog. Theor. Phys. 53 (1975) 1652.

[2] C. H. Gu, H.S. Hu, and Z. X. Zhou, Darboux Transformation in Soliton Theory and Its Geometric Applications, Shanghai Science and Technology Press, Shanghai (2005).

[3] A. K. Pogrebkov, Theor. Math. Phys. 181 (2014) 1585.

[4] R. Hirota and J. Satsuma, Phys. Lett. A 85 (1981) 407.

[5] H. W. Tam, W. X. Ma, X. B. Hu, and D. L. Wang, J. Phys. Soc. Jpn. 69 (2000) 45.

[6] X. B. Hu, J. Phys. A: Math. Gen. 30 (1998) 8225.

[7] G. Z. Tu, Sci. China (Serries A) 32 (1989) 142.

[8] M. Jimbo and T. Miwa, Publications of the Research Institude for Mathematical Sciences Kyato University 19 (1983) 943.

[9] Z. H. Zhao and Z. D. Dai, Int. J. Nonl. Sci. Numer. Simulation 11 (2010) 679.

[10] X. Zhao, L. Wang, and W. Sun, Chaos, Solitons and Fractals 28 (2006) 448.

[11] M. Senthilvelan, Appl. Math. Comp. 123 (2001) 381.

[12] J. H. He, Phys. Lett. A 335 (2005) 182.

[13] A.V. Mikhailov. Phys. D 3 (1981) 73.

[14] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge (1991).

[15] V. O. Vakhnenko, E. J. Parkes, and A. J. Morrison, Chaos, Solitons and Fractals 17 (2003) 683.

[16] B. Ren, J. Yu, and X. Z. Liu, Commun. Theor. Phys. 65 (2016) 341.

[17] L. Wang, S. F. Tian, Z. T. Zhao, and X. Q. Song, Commun. Theor. Phys. 66 (2016) 35.

[18] D. S. Wang, X. G. Li, C. K. Chan, and J. Zhou, Commun. Theor. Phys. 65 (2016) 259.

[19] C. J. Wang, Z. D. Dai, and C. F. Liu, Mediter. J. Math. (2015) 1.

[20] W. Tan and Z. D. Dai, Nonlinear Dyn. 85 (2016) 817.

[21] X. Y. Tang, Phys. Lett. A 314 (2003) 286.

[22] F. Z. Lin and S. H. Ma, Adv. Mater. Res. 912-914 (2014) 1303.

[23] C. Tian, The Lie Group and Its Applications in Differential Equation, Science Press, Beijing (2001).

[24] Y. Li and D. Li, Appl. Math. Sci. 6 (2012) 579.

[25] N. Liu and X. Q. Liu, Chin. J. Quant. Electr. 25 (2008) 546.

[26] Y. N. Tang and W. J. Zai, Nonlinear Dyn. 81 (2015) 249.

Funding

Supported by National Natural Science Foundation of China under Grant No. 11361048

PDF(2629 KB)

880

Accesses

0

Citation

Detail

Sections
Recommended

/