Two-Body Local-Momentum Approximation of Spinless Particles Scattered by a (1+1)-D Woods-Saxon Barrier Potential

Karl-Erik Thylwe

Communications in Theoretical Physics ›› 2017, Vol. 67 ›› Issue (06) : 619-625.

PDF(323 KB)
Welcome to visit Communications in Theoretical Physics, May 23, 2025
PDF(323 KB)
Communications in Theoretical Physics ›› 2017, Vol. 67 ›› Issue (06) : 619-625.
General

Two-Body Local-Momentum Approximation of Spinless Particles Scattered by a (1+1)-D Woods-Saxon Barrier Potential

  • Karl-Erik Thylwe
Author information +
History +

Abstract

A local momentum (LM) approximation applicable to semi-relativistic two-body repulsive interactions is presented. It assumes negligible variations in the (vector-type) potential. A Woods-Saxon barrier with a rectangular-like shape is studied in some detail. The LM-approximation gives exact results within the semi-relativistic framework for rectangular barrier interactions in (1+1) dimensions. Further approximations of the local momentum approach leads to the two-body approximation of Ikhdair & Sever, known since the early 90's as the spinless Salpeter equation approximating the Bethe-Salpeter equation. LM-and GS-results indicate significant two-body effects. Results obtained from the (single-mass) Dirac equation are similar for certain two-body mass combinations.

Key words

two-body effects / semi-relativistic / barrier transmission

Cite this article

Download Citations
Karl-Erik Thylwe. Two-Body Local-Momentum Approximation of Spinless Particles Scattered by a (1+1)-D Woods-Saxon Barrier Potential[J]. Communications in Theoretical Physics, 2017, 67(06): 619-625

References

[1] S. M. Ikhdair and R. Sever, IC/92/186(INTERNAL REPORT) (1994); S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. E (2008) 1107; S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. A (2005) 16509.

[2] W. Lucha and F. F. Schöberl, Int. J. Mod. Phys. A (2002) 2233; W. Lucha and F. F. Schöberl, Int. J. Mod. Phys. A (2000) 3221; W. Lucha and F. F. Schöberl, Int. J. Mod. Phys. A (1999) 2309; W. Lucha and F. F. Schöberl, Fizika B (1999) 193; W. Lucha and F. F. Schöberl, Phys. Rev. A (1999) 5091; W. Lucha and F. F. Schöberl, Phys. Rev. A (1996) 3790; W. Lucha and F. F. Schöberl, Phys. Rev. D (1994) 5443; W. Lucha and F. F. Schöberl, Phys. Rev. D (1994) 5443.

[3] S. Hassanabadia, M. Ghominejada, S. Zarrinkamarb, and H. Hassanabadi, Chin. Phys. B (2013) 060303; S. Hassanabadi and A. A. Rajabi, Mod. Phys. Lett. A (2012) 1250057; S. Zarrinkamar, A. A. Rajabi, H. Hassanabadi, and H. Rahimov, Phys. Scr. (2011) 065008; S. Zarrinkamar, A. A. Rajabi, and H. Hassanabadi, Few-Body Sys. (2011) 165.

[4] S. Hassanabadia, M. Ghominejada, and K. E. Thylwe, Commun. Theor. Phys. (2015) 423.

[5] K. E. Thylwe, O. J. Oluwadare, and K. J. Oyewumi, Commun. Theor. Phys. (2016) 389.

[6] I. J. Nickisch, B. Durand, and L. Durand, Phys. Rev. D (1982) 2312; I. J. Nickisch, B. Durand, and L. Durand, Phys. Rev. D (1984) 1904.

[7] S. J. Wallace, Phys. Rev. Lett. (2001)180401.

[8] J. Bijtebier and J. Broekaert, Nuovo Cimento A (1992) 351.

[9] R. Arshansky and L. P. Horwitz, J. Math. Phys. (1989) 213.

[10] N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, Oxford University Press, Cambridge, Ch. 2(1965).

[11] K. E. Thylwe, J. Phys. A:Math. Gen. (2005) 235.

[12] W. E. Milne, Phys. Rev. (1930) 863; H. A. Wilson, Phys. Rev. (1930) 948; H. A. Young, Phys. Rev. (1931) 1612; H. A. Young, Phys. Rev. (1932) 455; J. A. Wheeler, Phys. Rev. (1937) 1123.

[13] H. J. Korsch and H. Laurent J. Phys. B (1981) 4213.

[14] A. D. Alhaidari, H. Bahlouli, Y. Benabderahmane, and A. Jellal, Phys. Rev. A (2012) 052113.

[15] M. J. Thomson and B. H. J. McKellar, Am. J. Phys. (1991) 340.
PDF(323 KB)

Accesses

Citation

Detail

Sections
Recommended

/