Spontaneous Emission Originating from Atomic BEC Interacting with a Single-Mode Quantized Field

E. Ghasemian, M. K. Tavassoly

Communications in Theoretical Physics ›› 2018, Vol. 69 ›› Issue (06) : 711-721.

PDF(550 KB)
Welcome to visit Communications in Theoretical Physics, May 22, 2025
PDF(550 KB)
Communications in Theoretical Physics ›› 2018, Vol. 69 ›› Issue (06) : 711-721.
Atomic, Molecular, Optical (AMO) and Plasma Physics, Chemical Physics

Spontaneous Emission Originating from Atomic BEC Interacting with a Single-Mode Quantized Field

  • E. Ghasemian, M. K. Tavassoly
Author information +
History +

Abstract

In this paper we present a general theoretical model for the interaction between a number of two-level atoms constituting Bose-Einstein condensate (BEC) and a single-mode quantized field. In addition to the usual interacting terms, we take into account interatom as well as higher-order atom-field interactions. To simplify the Hamiltonian of system, after using the Bogoliubov approximation we proceed to calculate the transformed operators of atoms and field. Then, to quantify the spontaneous emission, we get analytical expressions for the expectation value of ?z as the atomic population inversion (API), in the cases of number and coherent states for the atomic subsystem. Our results show that the above-mentioned model interaction leads to the appearance of collapse-revival phenomenon in API. In more detail, the revival time may be tuned by adjusting the interatom interaction constant. Also, the damping process lowers the amplitude of API, but does not change the CR times for weak damping. Moreover, increasing the damping may decrease the number of CRs in a given interval of time such that no revival occurs. Briefly, it may be concluded that in the resonant case the revival times are insensitive to the change of the higher-order atom-field interaction constant and are affected only by the interatom interactions. Finally, we express that, how we can find a practical procedure to measure the quantum states of atoms in BEC.

Key words

Bose-Einstein condensate / atom-field interaction / spontaneous emission / atomic population inversion / collapse-revival phenomenon

Cite this article

Download Citations
E. Ghasemian, M. K. Tavassoly. Spontaneous Emission Originating from Atomic BEC Interacting with a Single-Mode Quantized Field[J]. Communications in Theoretical Physics, 2018, 69(06): 711-721

References

[1] P. Goy, J. M. Raimond, M. Gross, and S. Haroche, Phys. Rev. Lett. 50 (1983) 903.

[2] W. Jhe, A. Anderson, E. A. Hinds, et al., Phys. Rev. Lett. 58 (1987) 666.

[3] M. Anderson, J. R. Ensher, M. R. Matthews, et al., Science. 269 (1995) 198.

[4] J. Javanainen, Phys. Rev. Lett. 72 (1994) 2375.

[5] L. You, M. Lewenstein, R. J. Glauber, and J. Cooper, Phys. Rev. A 53 (1996) 329.

[6] C. Zheng, P. Zhang, and S. Yi, Commun. Theor. Phys. 68 (2017) 236.

[7] Y. X. Huang, N. J. Hui, W. F. Liu, et al., Commun. Theor. Phys. 64 (2015) 644.

[8] Z. X. Yu and Z. Y. Jiao, Commun. Theor. Phys. 36 (2001) 449.

[9] Z. X. Yu and W. G. Zhang, Commun. Theor. Phys. 37 (2002) 39.

[10] C. M. Savage, J. Ruostekoski, and D. F. Walls, Phys. Rev. A 56 (1997) 2046.

[11] W. Ketterle, Phys. Scr. T. 102 (2002) 36.

[12] Z. Rapti, G. Theocharis, P. G. Kevrekidis, et al., Phys. Scr. T107 (2004) 27.

[13] Z. Chang, Phys. Rev. A 47 (1993) 5017.

[14] J. Seke, Phys. Rev. A 33 (1998) 739.

[15] F. W. Cummings and A. Dorri, Phys. Rev. A 28 (1983) 2282.

[16] A. S. Shumovsky, F. Le Kien, and E. I. Aliskenderov, J. Phys. 48 (1987) 1933.

[17] Z. Haghshenasfard and M. G. Cottam, Eur. Phys. J. D 66 (2012) 186.

[18] Z. Haghshenasfard, M. H. Naderi, and M. Soltanolkotabi, At. Mol. Opt. Phys. 42 (2009) 065505.

[19] M. R. Hush, S. S. Szigeti, A. R. R. Carvalho, and J. J. Hope, New J. Phys. 15 (2013) 113060.

[20] G. Ri. Jin and W. M. Liu, Phys. Rev. A 70 (2004) 013803.

[21] E. Ghasemian and M. K. Tavassoly, Phys. Lett. A 380 (2016) 2362.

[22] E. Ghasemian and M. K. Tavassoly, J. Opt. Soc. Am. B 35 (2018) 86.

[23] M. O. Mewes, M. R. Andrews, D.M. Kurn, et al., Phys. Rev. Lett. 78 (1997) 582.

[24] L. M. Kuang and L. Zhou, Phys. Rev. A 68 (2003) 043606.

[25] M. T. Johnsson, G. R. Dennis, and J. J. Hope, New J. Phys. 15 (2013) 123024.

[26] E. Ghasemian and M. K. Tavassoly, Laser Phys. 27 (2017) 095202.

[27] N. N. Bogoliubov, J. Phys. (USSR) 11 (1947) 23.

[28] C. Huang, J. Fang, H. He, et al., Physica A 387 (2008) 3449.

[29] B. A. Nguyen, Phys. Rev. B 48 (1993) 11732.

[30] M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge (1997).

[31] M. Kuwata-Gonokami, S. Inouye, H. Suzuura, et al., Phys. Rev. Lett. 79 (1997) 1341.

[32] G. R. Jin, Z. X. Liang, and W. M. Liu, J. Opt. B:Quant. Semiclass. Opt. 6 (2004) 296.

[33] X. M. Feng, P. Wang, W. Yang, and G. R. Jin, Phys. Rev. E 92 (2015) 043307.

[34] L. M. Kuang and Z. W. Ouyang, Phys. Rev. A 61 (2000) 023604.

[35] A. Chefles and S. M. Barnett, J. Mod. Opt. 43 (1996) 709.

[36] F. Sols, Physica B 194 (1994) 1389.

[37] G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Phys. Rev. A 55 (1997) 4318.

[38] J. Williams, R. Walser, J. Cooper, et al., Phys. Rev. A 61 (2000) 033612.

[39] W. D. Li, X. J. Zhou, Y. Q. Wang, et al., Phys. Rev. A 64 (2001) 015602.

[40] P. Zhang, C. K. Chan, X. G. Li, and X. G. Zhao, J. Phys. B 35 (2002) 4647.

[41] L. Zhou, L. B. Kong, and M. S. Zhan, Chin. Phys. B 17 (2008) 1601.
PDF(550 KB)

331

Accesses

0

Citation

Detail

Sections
Recommended

/