Significance of Darcy-Forchheimer Porous Medium in Nanofluid Through Carbon Nanotubes

Taseer Muhammad, Dian-Chen Lu, B. Mahanthesh, Mohamed R. Eid, Muhammad Ramzan, Amanullah Dar

Communications in Theoretical Physics ›› 2018, Vol. 70 ›› Issue (03) : 361-366.

PDF(758 KB)
Welcome to visit Communications in Theoretical Physics, May 22, 2025
PDF(758 KB)
Communications in Theoretical Physics ›› 2018, Vol. 70 ›› Issue (03) : 361-366.
Condensed Matter Physics

Significance of Darcy-Forchheimer Porous Medium in Nanofluid Through Carbon Nanotubes

  • Taseer Muhammad1,2, Dian-Chen Lu1, B. Mahanthesh3, Mohamed R. Eid4,8, Muhammad Ramzan5,6, Amanullah Dar7
Author information +
History +

Abstract

This article manages Darcy-Forchheimer 3D flow of water based carbon nanomaterial (CNTs). A bidirectional nonlinear stretchable surface has been utilized to make the flow. Disturbance in permeable space has been represented by Darcy Forchheimer (DF) expression. Heat transfer mechanism is explored through convective heating. Outcomes for SWCNT and MWCNT have been displayed and compared. The reduction of partial differential framework into nonlinear common differential framework is made through reasonable variables. Optimal series scheme is utilized for arrangements advancement of associated flow issue. Optimal homotopic solution expressions for velocities and temperature are studied through graphs by considering various estimations of physical variables. Moreover surface drag coefficients and heat transfer rate are analyzed through plots.

Key words

three-dimensional flow / CNTs (SWCNT and MWCNT) / Darcy-Forchheimer porous space / convective surface condition / nonlinear stretching surface

Cite this article

Download Citations
Taseer Muhammad, Dian-Chen Lu, B. Mahanthesh, Mohamed R. Eid, Muhammad Ramzan, Amanullah Dar. Significance of Darcy-Forchheimer Porous Medium in Nanofluid Through Carbon Nanotubes[J]. Communications in Theoretical Physics, 2018, 70(03): 361-366

References

[1] S. U. S. Choi, Z. G. Zhang, W. Yu, et al., Appl. Phys. Lett. 79 (2001) 2252.

[2] Q. Z. Xue, Physica B:Condensed Matter 368 (2005) 302.

[3] Y. Ding, H. Alias, D. Wen, and R. A. Williams, Int. J. Heat Mass Transfer 49 (2006) 240.

[4] J. Wang, J. Zhu, X. Zhang, and Y. Chen, Exp. Therm. Fluid Sci. 44 (2013) 716.

[5] M. R. Safaei, H. Togun, K. Vafai, et al., Numerical Heat Transfer, Part A 66 (2014) 1321.

[6] R. Ellahi, M. Hassan, and A. Zeeshan, IEEE Trans. Nanotech. 14 (2015) 726.

[7] T. Hayat, Z. Hussain, T. Muhammad, and A. Alsaedi, J. Mol. Liq. 221 (2016) 1121.

[8] Z. Iqbal, E. Azhar, and E. N. Maraj, Physica E:Low-dimensional Systems and Nanostructures 91 (2017) 128.

[9] U. Khan, N. Ahmed, and S. T. Mohyud-Din, Appl. Thermal Eng. 113 (2017) 1107.

[10] T. Hayat, S. Ahmed, T. Muhammad, et al., Results Phys. 7 (2017) 2651.

[11] T. Hayat, F. Haider, T. Muhammad, and A. Alsaedi, Int. J. Heat Mass Transfer 112 (2017) 248.

[12] R. Ellahi, M. H. Tariq, M. Hassan, and K. Vafai, J. Mol. Liq. 229 (2017) 339.

[13] S. Rashidi, J. A. Esfahani, and R. Ellahi, Appl. Sci. 7 (2017) 431.

[14] T. Hayat, R. Sajjad, T. Muhammad, et al., Results Phys. 7 (2017) 535.

[15] J. A. Esfahani, M. Akbarzadeh, S. Rashidi, et al., Int. J. Heat Mass Transfer 109 (2017) 1162.

[16] M. Hassan, A. Zeeshan, A. Majeed, and R. Ellahi, J. Magn. Magn. Mater. 443 (2017) 36.

[17] T. Hayat, R. Sajjad, A. Alsaedi, et al., Results Phys. 7 (2017) 553.

[18] R. Ellahi, Appl. Sci. 8 (2018) 192.

[19] A. Zeeshan, N. Shehzad, and R. Ellahi, Results Phys. 8 (2018) 502.

[20] N. Ijaz, A. Zeeshan, M. M. Bhatti, and R. Ellahi, J. Mol. Liq. 250 (2018) 80.

[21] S. Rashidi, S. Akar, M. Bovand, and R. Ellahi, Renewable Energy 115 (2018) 400.

[22] M. R. Eid, K. L. Mahny, T. Muhammad, and M. Sheikholeslami, Results Phys. 8 (2018) 1185.

[23] M. Sheikholeslami, T. Hayat, T. Muhammad, and A. Alsaedi, Int. J. Mech. Sci. 135 (2018) 532.

[24] T. Hayat, K. Muhammad, T. Muhammad, and A. Alsaedi, Commun. Theor. Phys. 69 (2018) 441.

[25] T. Hayat, F. Haider, T. Muhammad, and A. Alsaedi, J. Phys. Chem. Solids 120 (2018) 79.

[26] P. Forchheimer, Zeitschrift Ver. D Ing. 45 (1901) 1782.

[27] M. Muskat, The Flow of Homogeneous Fluids Through Porous Media, Edwards, MI (1946).

[28] M. A. Seddeek, J. Colloid Interface Sci. 293 (2006) 137.

[29] T. Hayat, T. Muhammad, S. Al-Mezal, and S. J. Liao, Int. J. Numer. Methods Heat Fluid Flow 26 (2016) 2355.

[30] S. A. Bakar, N. M. Arifin, R. Nazar, et al., Frontiers Heat Mass Transfer 7 (2016) 38.

[31] T. Hayat, A. Aziz, T. Muhammad, and A. Alsaedi, Commun. Theor. Phys. 68 (2017) 387.

[32] J. C. Umavathi, O. Ojjela, and K. Vajravelu, Int. J. Thermal Sci. 111 (2017) 511.

[33] T. Hayat, F. Haider, T. Muhammad, and A. Alsaedi, Results Phys. 7 (2017) 2663.

[34] T. Muhammad, A. Alsaedi, S. A. Shehzad, and T. Hayat, Chin. J. Phys. 55 (2017) 963.

[35] T. Hayat, F. Haider, T. Muhammad, and A. Alsaedi, J. Mol. Liq. 233 (2017) 278.

[36] T. Muhammad, A. Alsaedi, T. Hayat, and S. A. Shehzad, Results Phys. 7 (2017) 2791.

[37] T. Hayat, K. Rafique, T. Muhammad, et al., Results Phys. 8 (2018) 26.

[38] T. Hayat, F. Haider, T. Muhammad, and A. Alsaedi, Results Phys. 8 (2018) 764.

[39] S. J. Liao, Commun. Nonlinear. Sci. Numer. Simul. 15 (2010) 2003.

[40] A. Malvandi, F. Hedayati, and G. Domairry, J. Thermodynamics 2013 (2013) 764827.

[41] T. Hayat, T. Muhammad, A. Alsaedi, and M. S. Alhuthali, J. Magn. Magn. Mater. 385 (2015) 222.

[42] M. Turkyilmazoglu, Filomat 30 (2016) 1633.

[43] A. Zeeshan, A. Majeed, and R. Ellahi, J. Mol. Liq. 215 (2016) 549.

[44] T. Hayat, S. Ahmed, T. Muhammad, and A. Alsaedi, Physica E:Low-dimensional Systems and Nanostructures 94 (2017) 70.

[45] T. Muhammad, T. Hayat, S. A. Shehzad, and A. Alsaedi, Results Phys. 8 (2018) 365.
PDF(758 KB)

497

Accesses

0

Citation

Detail

Sections
Recommended

/