Interaction of Wave Trains with Defects

Xian-Wei Chen, Peng-Fei Li, Xiao-Ping Yuan, Ye-Hua Zhao, Jun Ma, Jiang-Xing Chen

Communications in Theoretical Physics ›› 2019, Vol. 71 ›› Issue (03) : 334-338.

PDF(1201 KB)
Welcome to visit Communications in Theoretical Physics, May 23, 2025
PDF(1201 KB)
Communications in Theoretical Physics ›› 2019, Vol. 71 ›› Issue (03) : 334-338.
Statistical Physics, Soft Matter and Biophysics

Interaction of Wave Trains with Defects

  • Xian-Wei Chen1, Peng-Fei Li3, Xiao-Ping Yuan2, Ye-Hua Zhao3, Jun Ma4, Jiang-Xing Chen3
Author information +
History +

Abstract

The evolution and transition of planar wave trains propagating through defects (obstacles) in an excitable medium are studied. When the frequency of the planar wave trains is increased, three different dynamical regimes, namely fusion, "V" waves, and spiral waves, are observed in turn and the underlying mechanism is discussed. The dynamics is concerned with the shapes of the defects. Circle, triangle, and rectangle defects with different sizes are considered. The increase of pacing frequency broadens the fan-shaped broken region in the behind of a rectangle defect. The increase of width of a triangle defect leads to breakup of wave trains easier while the change of height shows opposite effect, which is presented in a phase diagram. Dynamical comparison on defects with different shapes indicates that the decrease of the defect width along the propagation of wave trains makes the fan-shaped region and the minimal frequency for breakup of spiral both increased.

Key words

planar wave trains / defects / fusion / "V" / pattern / spiral wave

Cite this article

Download Citations
Xian-Wei Chen, Peng-Fei Li, Xiao-Ping Yuan, Ye-Hua Zhao, Jun Ma, Jiang-Xing Chen. Interaction of Wave Trains with Defects[J]. Communications in Theoretical Physics, 2019, 71(03): 334-338

References

[1] Q. Ouyang and J. M. Flesselles, Nature (Lodon) 379 (1996) 143.

[2] B. Robertson, M. J. Huang, J. X. Chen, and R. Kapral, Acc. Chem. Res. 51 (2018) 2355.

[3] J. X. Chen, Y. G. Chen, and R. Kapral, Adv. Sci. 5 (2018) 1800028.

[4] G. Q. Sun, Nonlinear Dyn. 85 (2016) 1.

[5] C. N. Wang, J. Ma, J. Tang, and Y. L. Li, Commun. Theor. Phys. 53 (2010) 382.

[6] E. M. Cherry and F. H. Fenton, New J. Phys. 10 (2008) 125016.

[7] J. Jalife, Annu. Rev. Physiol. 62 (2000) 25.

[8] F. X. Witkowski, L. J. Leon, et al., Nature (London) 392 (1998) 78.

[9] S. Luther, F. H. Fenton, B. G. Kornreich, et al., Nature (London) 475 (2011) 235.

[10] Y. Q. Fu, H. Zhang, Z. Cao, et al., Phys. Rev. E 72 (2005) 046206.

[11] J. X. Chen, H. Zhang, L. Y. Qiao, H. Liang, and W. G. Sun, Commun. Nonlinear Sci. 54 (2018) 202.

[12] Z. Nagy-Ungvarai, A. M. Pertsov, B. Hess, et al., Physica D 61 (1992) 205.

[13] M. Pertsov, A. V. Panfilov, and F. U. Medvedeva, Biofizika 28 (1983) 100.

[14] K. Agladze, J. P. Keener, S. C. Muller, and A. Panfilov, Science 264 (1994) 1746.

[15] Y. L. Zhan, B. Maskara, F. Aguel, et al., Circulation 114 (2006) 2113.

[16] T. Ikeda, M. Yashima, T. Uchida, et al., Circ. Res. 81 (1997) 753.

[17] M. Valderrabano, Y. H. Kim, M. Yashima, et al., J. Am. Coll. Cardiol. 36 (2000) 2000.

[18] Y. H. Kim, F. Xie, M. Yashima, et al., Circulation 100 (1999) 1450.

[19] A. Vinet and F. A. Roberge, Ann. Biomed. Eng. 22 (1994) 568.

[20] F. Xie, Z. Qu, and A. Garfinkel, Phys. Rev. E 58 (1998) 6355.

[21] Z. Qu, J. N. Weiss, and A. Garfinkel, Phys. Rev. Lett. 78 (1997) 1387.

[22] D. Kupitz, S. Alonso, M. Bär, et al., Phys. Rev. E 84 (2011) 056210.

[23] J. X. Chen, J. Xiao, L. Y. Qiao, and J. R. Xu, Commun. Nonlinear Sci. 59 (2018) 331.

[24] G. Y. Yuan, H. Zhang, X. L. Wang, G. R. Wang, and S. Y. Chen, Nonlinear Dynam. 90 (2017) 2745.

[25] Z. Tang, Y. Y. Li, L. Xi, B. Jia, and H. G. Gu, Commun. Theor. Phys. 57 (2012) 61.

[26] M. Bär and M. Eiswirth, Phys. Rev. E 48 (1993) R1635.

[27] J. X. Chen, M. M. Guo, and J. Ma, EPL 113 (2016) 38004.

[28] G. N. Tang, et al., Phys. Rev. E 77 (2008) 046217.

[29] J. J. Tyson and J. P. Keener, Physica D 32 (1988) 327.

[30] A. Isomura, M. Horning, K. Agladze, and K. Yoshikawa, Phys. Rev. E 78 (2008) 066216.

Funding

Supported by the Natural Science Foundation of Zhejiang Province under Grant Nos. LQ14A050003 and LR17A050001; Zhejiang Province Commonweal Projects under Grant No. GK180906288001; and China Scholarship Council under Grant No. 201708330401

PDF(1201 KB)

152

Accesses

0

Citation

Detail

Sections
Recommended

/