
Quantum numbers of the pentaquark states
Chong-yao Chen,Muyang Chen,Yu-Xin Liu
Communications in Theoretical Physics ›› 2020, Vol. 72 ›› Issue (12) : 125202.
Quantum numbers of the pentaquark states
We investigate the quantum numbers of the pentaquark states
pentaquark states / exotic hadrons / color confinement / symmetry analysis {{custom_keyword}} /
Table 1. IRREPs of the flavor-spin symmetry corresponding to each possible orbital symmetry. |
[f]O | [f]FS |
---|---|
[4] | [31] |
[31] | [4], [31], [22], [211] |
[22] | [31], [211] |
[211] | [31], [22], [211], [1111] |
[1111] | [211] |
Table 2. Spin-flavor decomposition of the three flavor q4 states (taken from reference [47]. The subscripts stand for the dimensions of the IRREP). |
[f]O | SUFS(6) | SUF(3) | ⨂ | SUS(2) | |
---|---|---|---|---|---|
[4] | [4]126 | [4]15 | ⨂ | [4]5 | |
[31]15 | ⨂ | [31]3 | |||
[22]6 | ⨂ | [22]1 | |||
| |||||
[31] | [31]210 | [4]15 | ⨂ | [31]3 | |
[31]15 | ⨂ | [4]5 | |||
[31]15 | ⨂ | [31]3 | |||
[31]15 | ⨂ | [22]1 | |||
[22]6 | ⨂ | [31]3 | |||
[211]3 | ⨂ | [22]1 | |||
[211]3 | ⨂ | [31]3 | |||
| |||||
[22] | [22]105 | [4]15 | ⨂ | [22]1 | |
[31]15 | ⨂ | [31]3 | |||
[22]6 | ⨂ | [4]5 | |||
[22]6 | ⨂ | [22]1 | |||
[211]3 | ⨂ | [31]3 | |||
| |||||
[211] | [211]105 | [31]15 | ⨂ | [31]3 | |
[31]15 | ⨂ | [22]1 | |||
[22]6 | ⨂ | [31]3 | |||
[211]3 | ⨂ | [4]5 | |||
[211]3 | ⨂ | [31]3 | |||
[211]3 | ⨂ | [22]1 | |||
| |||||
[1111] | [1111]15 | [22]6 | ⨂ | [22]1 | |
[211]3 | ⨂ | [31]3 |
Table 3. Spin-flavor decomposition of the |
[f]O | SUsf(6) | SUf(3) | ⨂ | SUs(2) | |
---|---|---|---|---|---|
[4] | [51111]700 | [51]35 | ⨂ | [5]6 | |
[51]35 | ⨂ | [41]4 | |||
[42]27 | ⨂ | [41]4 | |||
[42]27 | ⨂ | [32]2 | |||
[33]10 | ⨂ | [32]2 | |||
[411]10 | ⨂ | [5]6 | |||
[411]10 | ⨂ | [41]4 | |||
[411]10 | ⨂ | [32]2 | |||
[321]8 | ⨂ | [41]4 | |||
[321]8 | ⨂ | [32]2 | |||
| |||||
[4] + [31] | [411111]56 | [411]10 | ⨂ | [41]4 | |
[321]8 | ⨂ | [32]2 | |||
| |||||
[31] | [42111]1134 | [51]35 | ⨂ | [41]4 | |
[51]35 | ⨂ | [32]2 | |||
[42]27 | ⨂ | [5]6 | |||
2([42]27 | ⨂ | [41]4) | |||
2([42]27 | ⨂ | [32]2) | |||
[33]10 | ⨂ | [41]4 | |||
[33]10 | ⨂ | [32]2 | |||
[411]10 | ⨂ | [5]6 | |||
2([411]10 | ⨂ | [41]4) | |||
2([411]10 | ⨂ | [32]2) | |||
[321]8 | ⨂ | [5]6 | |||
2([321]8 | ⨂ | [41]4) | |||
2([321]8 | ⨂ | [32]2) | |||
[222]1 | ⨂ | [41]4 | |||
[222]1 | ⨂ | [32]2 | |||
[f]O | SUsf(6) | SUf(3) | ⨂ | SUs(2) | |
| |||||
[31] + [22] + [211] | [321111]70 | [411]10 | ⨂ | [32]2 | |
⨂ | [41]4 | ||||
[321]8 | ⨂ | [32]2 | |||
[222]1 | ⨂ | [32]2 | |||
| |||||
[22] | [33111]560 | [51]35 | ⨂ | [32]2 | |
[42]27 | ⨂ | [41]4 | |||
[42]27 | ⨂ | [32]2 | |||
[33]10 | ⨂ | [5]6 | |||
[33]10 | ⨂ | [41]4 | |||
[33]10 | ⨂ | [32]2 | |||
[411]10 | ⨂ | [41]4 | |||
[411]10 | ⨂ | [32]2 | |||
[321]8 | ⨂ | [5]6 | |||
2([321]8 | ⨂ | [41]4) | |||
2([321]8 | ⨂ | [32]2) | |||
[222]1 | ⨂ | [41]4 | |||
| |||||
[211] | [3211]540 | [42]7 | ⨂ | [41]4 | |
2([42]7 | ⨂ | [32]2 | |||
[33]10 | ⨂ | [41]4 | |||
[33]10 | ⨂ | [32]2 | |||
[411]10 | ⨂ | [41]4 | |||
[411]10 | ⨂ | [32]2 | |||
[321]8 | ⨂ | [5]6 | |||
2([321]8 | ⨂ | [41]4) | |||
2([321]8 | ⨂ | [32]2) | |||
[222]1 | ⨂ | [5]6 | |||
[222]1 | ⨂ | [41]4 | |||
[222]1 | ⨂ | [32]2 | |||
| |||||
[211] + [1111] | [222111]20 | [321]8 | ⨂ | [32]2 | |
[222]1 | ⨂ | [41]4 | |||
| |||||
[1111] | [22221]70 | [33]10 | ⨂ | [32]2 | |
[321]8 | ⨂ | [41]4 | |||
[321]8 | ⨂ | [32]2 | |||
[222]1 | ⨂ | [32]2 |
Figure 1. Left panel: body frame illustration of the equilateral tetradedron (ETH) configuration. Right panel: body frame illustration of the square. |
Table 4. IRREPs of the permutation group S4 under the standard basis. |
[4] | p12 = p23 = p34 = p1423 = p243 = p1324 = 1, |
[31] | |
| |
[22] | |
| |
[211] | |
| |
[1111] | p12 = p23 = p34 = p1423 = p1324 = − 1,p243 = 1. |
Table 5. IRREPs of the rotation group, j is the angular moment, m1 and m2 denote the rows and columns of the matrix, α, β, γ is the Eulerian angular. |
L = 1 | |
Table 6. Obtained accessibility of the ETH configuration and the square configuration to the (Lπλ) and related configurations of the wave functions. |
Lπ | [4] | [31] | [22] | [211] | [1111] | |
---|---|---|---|---|---|---|
ETH | 0+ | A | — | — | A | — |
1− | — | A | A | A | A | |
2+ | A | A | A | A | A | |
3− | A | A | A | A | A | |
| ||||||
ETH3 | 0+ | A | — | A | A | — |
1− | — | A | A | A | A | |
2+ | A | A | A | A | A | |
3− | A | A | A | A | A | |
| ||||||
Square | 0+ | A | — | A | — | — |
1− | — | A | — | A | — | |
2+ | A | A | A | A | A | |
3− | — | A | — | A | — | |
| ||||||
Square3 | 0+ | A | A | A | A | — |
1− | — | A | — | A | — | |
2+ | A | A | A | A | A | |
3− | — | A | — | A | - |
Table 7. Obtained number of the accessible (nodeless) states JP with orbital angular momentum L ≤ 3 of the ETH configuration and square configuration of the 4-quark system and the corresponding less restricted ones. |
Configuration | 0+ | 0− | 1+ | 1− | 2+ | 2− | 3+ | 3− | 4+ | 4− | 5+ | 5− |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ETH | 7 | 10 | 19 | 22 | 25 | 28 | 15 | 26 | 4 | 15 | 0 | 4 |
square | 7 | 7 | 18 | 15 | 25 | 19 | 15 | 17 | 4 | 10 | 0 | 2 |
ETH3 | 9 | 10 | 21 | 22 | 26 | 28 | 15 | 26 | 4 | 15 | 0 | 4 |
square3 | 11 | 7 | 25 | 15 | 27 | 19 | 15 | 17 | 4 | 10 | 0 | 2 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
This work was supported by the National Natural Science Foundation of China under Contracts No. 11435001, No. 11775041, and the National Key Basic Research Program of China under Contract No. 2015CB856900.
/
〈 |
|
〉 |