
The upper bound on the tensor-to-scalar ratio consistent with quantum gravity
Lina Wu,Qing Gao,Yungui Gong,Yiding Jia,Tianjun Li
Communications in Theoretical Physics ›› 2021, Vol. 73 ›› Issue (7) : 75402.
The upper bound on the tensor-to-scalar ratio consistent with quantum gravity
We consider the polynomial inflation with the tensor-to-scalar ratio as large as possible which can be consistent with the quantum gravity (QG) corrections and effective field theory (EFT). To get a minimal field excursion Δφ for enough e-folding number N, the inflaton field traverses an extremely flat part of the scalar potential, which results in the Lyth bound to be violated. We get a CMB signal consistent with Planck data by numerically computing the equation of motion for inflaton φ and using Mukhanov–Sasaki formalism for primordial spectrum. Inflation ends at Hubble slow-roll parameter
polynomail inflation / Lyth bound / tensor-to-scalar ratio {{custom_keyword}} /
Figure 1. r versus Δφ for the polynomial inflation. Here the e-folding number, the scalar spectral index and the relative running are fixed to be N = 55, ns = 0.9649, and αs = − 0.0045, respectively. The red line corresponds to the the low bound on the inflaton excursion. The three horizontal dashed lines correspond to Δφ = 0.632, 1.0, 2.0 MPl, respectively. |
Figure 2. The evolution of Hubble flow slow-roll parameters |
Figure 3. The potential V/V0 and its first derivative |
Table 1. The low bound of inflaton excursion and the parameters for inflation potential. Here e-folding number, the scalar spectral index and the relative running are fixed to the central value, i.e. N = 55, ns = 0.9649, and αs = − 0.0045. |
r | λ1(10−2) | λ2(10−3) | λ3(10−3) | λ4(10−2) | λ5(10−2) | Δφ(MPl) |
---|---|---|---|---|---|---|
0.01 | −3.6188 | −10.0437 | −9.8543 | 32.1351 | −35.5515 | 1.313 |
0.02 | −5.1138 | −9.03945 | −6.64997 | 16.0928 | −12.7293 | 1.673 |
0.03 | −6.25887 | −8.08913 | −5.19385 | 10.7428 | −7.0106 | 1.928 |
0.04 | −7.22116 | −7.06825 | −4.32425 | 8.070 43 | −4.61105 | 2.129 |
0.05 | −8.05932 | −6.08622 | −3.73725 | 6.479 09 | −3.34879 | 2.297 |
0.056 | −8.51818 | −5.47844 | −3.4711 | 5.799 87 | −2.85268 | 2.385 |
0.0012 | −1.25467 | −11.007 | −29.7032 | 267.333 | −844.752 | 0.632 |
0.0046 | −2.45598 | −10.6889 | −1.49114 | 69.7688 | −113.004 | 1.000 |
0.0335 | −7.5746 | −5.6969 | −4.1581 | 7.1323 | −3.8853 | 2.000 |
Figure 4. The low bounds on inflaton excursions. The black line corresponds to the fitted linear equation |
Table 2. The low bound of inflaton excursion. Δφ is numerically calculated from equation ( |
ns | Δφ(MPl) | δφ(MPl) |
---|---|---|
0.9625 | 1.30117 | 1.11196 |
0.9655 | 1.29696 | 1.10843 |
0.9685 | 1.29244 | 1.10351 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
This work was supported in part by the Projects 11875062, 11875136, and 11947302 supported by the National Natural Science Foundation of China, by the Major Program of the National Natural Science Foundation of China under Grant No. 11690021, by the Key Research Program of Frontier Science, CAS. This work was also supported in part by the Program 2020JQ-804 supported by Natural Science Basic Research Plan in Shanxi Province of China, and by the Program 20JK0685 funded by Shanxi Provincial Education Department.
/
〈 |
|
〉 |