
Generalizations of the finite nonperiodic Toda lattice and its Darboux transformation
Jian Li,Chuanzhong Li
Communications in Theoretical Physics ›› 2021, Vol. 73 ›› Issue (8) : 85002.
Generalizations of the finite nonperiodic Toda lattice and its Darboux transformation
In this paper, we construct Hamiltonian systems for 2N particles whose force depends on the distances between the particles. We obtain the generalized finite nonperiodic Toda equations via a symmetric group transformation. The solutions of the generalized Toda equations are derived using the tau functions. The relationship between the generalized nonperiodic Toda lattices and Lie algebras is then be discussed and the generalized Kac-van Moerbeke hierarchy is split into generalized Toda lattices, whose integrability and Darboux transformation are studied.
Hamiltonian systems / Toda lattices / Darboux transformation / Lie algebra / Kac-van Moerbeke hierarchy {{custom_keyword}} /
The tau functions
Let
If
are real matrices, and
By calculating the symmetry of the previous assumption, we can obtain lemma
Assuming V,
(1) | |
(2) | |
(3) |
(1) |
From
and we can prove conclusions (1), (2). From and we have proved conclusion (3). According to the expressions ofLet Φ,
An L-order two-dimensional Darboux transformation can be obtained by generalizing the method of [31]. Let
1.The equations and systems involved in this article are weakly coupled when | |
2.The equations and systems involved in this article are strongly coupled when |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Chuanzhong Li is supported by the National Natural Science Foundation of China under Grant No. 12 071 237 and by the K C Wong Magna Fund in Ningbo University.
/
〈 |
|
〉 |