
The continuous wavelet derived by smoothing function and its application in cosmology
Yun Wang,Ping He
Communications in Theoretical Physics ›› 2021, Vol. 73 ›› Issue (9) : 95402.
The continuous wavelet derived by smoothing function and its application in cosmology
The wavelet analysis technique is a powerful tool and is widely used in broad disciplines of engineering, technology, and sciences. In this work, we present a novel scheme of constructing continuous wavelet functions, in which the wavelet functions are obtained by taking the first derivative of smoothing functions with respect to the scale parameter. Due to this wavelet constructing scheme, the inverse transforms are only one-dimensional integrations with respect to the scale parameter, and hence the continuous wavelet transforms (CWTs) constructed in this way are more ready to use than the usual scheme. We then apply the Gaussian-derived wavelet constructed by our scheme to computations of the density power spectrum for dark matter, the velocity power spectrum and the kinetic energy spectrum for baryonic fluid. These computations exhibit the convenience and strength of the CWTs. The transforms are very easy to perform, and we believe that the simplicity of our wavelet scheme will make CWTs very useful in practice.
wavelet analysis / intergalactic medium / large-scale structure of Universe {{custom_keyword}} /
Figure 4. The Fourier and wavelet power spectrum of the 1D velocity field for baryonic fluid. The left vertical axis is for the Fourier power spectrum, and the right axis is for the wavelet power spectrum. The wavelet energy spectrum is also shown for comparison. The data is taken from the IllustrisTNG simulation. |
Figure B1. Three different smoothing functions and their corresponding wavelets. Upper left panel: Gaussian (red line), Meyer scaling (blue line) and Epanechnikov (green line) function in real space. Upper right panel: the wavelet functions derived from these smoothing functions. Lower left panel: Fourier transforms of the three smoothing functions. Lower right panel: Fourier transforms of the wavelets derived from the corresponding smoothing functions. |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
We acknowledge the support by the National Science Foundation of China (No. 11947415, 12047569), and by the Natural Science Foundation of Jilin Province, China (No. 20180101228JC). In this work, we used the data from IllustrisTNG simulations. The IllustrisTNG simulations were undertaken with compute time awarded by the Gauss Centre for Supercomputing (GCS) under GCS Large-Scale Projects GCS-ILLU and GCS-DWAR on the GCS share of the supercomputer Hazel Hen at the High Performance Computing Center Stuttgart (HLRS), as well as on the machines of the Max Planck Computing and Data Facility (MPCDF) in Garching, Germany.
/
〈 |
|
〉 |