Welcome to visit Communications in Theoretical Physics,
Mathematical Physics and Quantum Information

Optical Solitons and Stability Analysis in Ring-Cavity Fiber System with Carbon Nanotube as Saturable Absorber

Expand
  • 1. Department of Mathematics, Science Faculty, Firat University, Elazig 23000, Turkey;
    2. Department of Mathematics, Science Faculty, Federal University Dutse, Jigawa 7156, Nigeria;
    3. Department of Mathematics, Science Faculty, Cankaya University, Ankara 06010, Turkey;
    4. Institute of Space Sciences, Magurele 077126, Romania

Received date: 2018-06-14

  Revised date: 2018-07-12

  Online published: 2018-11-01

Abstract

This paper addresses the ring-cavity fiber laser system. A class of gray and black soliton solutions of the model are reported by adopting an appropriate envelope ansatz. Further more, the modulation instability (MI) of the equation is studied using the linear-stability analysis (LSA) technique and the MI gain spectrum is derived. Some physical interpretations and analysis of the results obtained are also presented.

Cite this article

Aliyu Isa Aliyu, Mustafa Inc, Abdullahi Yusuf, Dumitru Baleanu . Optical Solitons and Stability Analysis in Ring-Cavity Fiber System with Carbon Nanotube as Saturable Absorber[J]. Communications in Theoretical Physics, 2018 , 70(05) : 511 -514 . DOI: 10.1088/0253-6102/70/5/511

References

[1] V. V. N. Obreja, Phys. E 40(2008) 2596.

[2] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photon. 4(2012) 611.

[3] X. M. Liu, Z. D. Huang, S. W. Oh, et al., Compos. Sci. Tech. 72(2012) 121.

[4] S. L. Ke, B. Wang, H. Huang, et al., Opt. Express 23(2015) 8888.

[5] C. Xie, C. Mak, X. M. Tao, et al., Adv. Funct. Mater. 27(2017) 1603886.

[6] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, Science 353(2016) 9439.

[7] X. H. Feng, K. Wang, Y. T. Cheng, et al., Superlatt. Microstruct. 109(2017) 41.

[8] M. O. Goerbig, Rev. Mod. Phys. 83(2011) 1193.

[9] S. Y. Wang, L. Z. Tan, W. H. Wang, et al., Phys. Rev. Lett. 113(2014) 196803.

[10] J. Xu, S. D. Wu, H. H. Li, et al., Opt. Express 20(2012) 23653.

[11] Z. B. Liu, X. Y. He, and D. N. Wang, Opt. Lett. 36(2011) 3024.

[12] Y. J. Li, L. Gao, W. Huang, et al., Opt. Express 24(2016) 23450.

[13] S. Kobtsev, A. Ivanenko, Y. G. Gladush, et al., Opt. Express 24(2016) 28769.

[14] M. Chemnitz, C. Gaida, M. Gebhardt, et al., Optics Express 26(2013) 3221.

[15] C. Mou, R. Arif, A. Rozhin, and S. Turitsyn, Opt. Mater. Exp. 2(2012) 884.

[16] A. Martinez, K. Fuse, B. Xu, and S. Yamashita, Opt. Exp. 8(2010) 3054.

[17] Y. L. Ma and B. Q. Li, Appl. Math. Comput. 219(2012) 2212.

[18] H. Triki, Q. Zhou, S. P. Moshokoa, et al., Optik 154(2018) 354.

[19] B. Q. Li, Y. L. Ma, and T. M. Yang, Superlattices and Microstructures. 113(2018) 366.

[20] M. Younis and S. T. R. Rizvi, J. Nanoelectr. Optoelectr. 11(2016) 276.

[21] G. R. Lin and Y. C. Lin, Laser Phys. Lett. 8(2011) 880.

[22] Y. M. A. Al-zahy, Opt. Eng. 54(2015) 011005.

[23] B. Kilic and M. Inc, Waves Random Complex Media 25(2015) 334.

[24] Z. Li, L. Li, and H. Tian, Phys. Rev. Lett. 84(2000) 4096.

[25] A. Choudhuri and K. Porsezian, Opt. Commun. 285(2012) 364.

[26] M. Inc, A. Yusuf, and A. I. Aliyu, Optical and Quantum Electronics 49(2017) 354.

[27] D. Baleanu, M. Inc, A. Yusuf, and A. I. Aliyu, Chin. J. Phys. 55(2017) 2341.

[28] M. Inc, A. I. Aliyu, A. Yusuf, and D. Baleanu, Superlattices and Microstructures 112(2018) 183.

[29] D. Baleanu, M. Inc, A. I. Aliyu, and A. Yusuf, Optik 147(2017) 248.

[30] M. Inc, A. I. Aliyu, A. Yusuf, and D. Baleanu, Optik 158(2018) 368.

[31] G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, Phys. Rev. A 39(1989) 3406.

[32] M. Saha and A. K. Sarma, Commun. Nonlinear Sci. Numer. Simulat. 18(2013) 2420.

[33] M. Inc, M. S. Hashemi, and A. I. Aliyu, Acta Physica Polonica A 133(2018) 1133.
Outlines

/