Welcome to visit Communications in Theoretical Physics,
Mathematical Physics and Quantum Information

Lump and Stripe Soliton Solutions to the Generalized Nizhnik-Novikov-Veselov Equation

Expand
  • 1. Institute of Nonlinear Analysis and Department of Mathematics, Zhejiang Lishui University, Lishui 323000, China;
    2. Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, China;
    3. Department of Photoelectric Engineering, Zhejiang Lishui University, Lishui 323000, China

Received date: 2018-05-31

  Revised date: 2018-06-28

  Online published: 2018-11-01

Supported by

Supported by the National Natural Science Foundation of China under Grant Nos. 11705077 and 11775104, Natural Science Foundation of Zhejiang Province under Grant No. LY14A010005 and Scientific Research Foundation of the First-Class Discipline of Zhejiang Province (B) (No. 201601)

Abstract

With the aid of the truncated Painlevé expansion, a set of rational solutions of the (2+1)-dimensional generalized Nizhnik-Novikov-Veselov (GNNV) equation with the quadratic function which contains one lump soliton is derived. By combining this quadratic function and an exponential function, the fusion and fission phenomena occur between one lump soliton and a stripe soliton which are two kinds of typical local excitations. Furthermore, by adding a corresponding inverse exponential function to the above function, we can derive the solution with interaction between one lump soliton and a pair of stripe solitons. The dynamical behaviors of such local solutions are depicted by choosing some appropriate parameters.

Cite this article

Zheng-Yi Ma, Jin-Xi Fei, Jun-Chao Chen . Lump and Stripe Soliton Solutions to the Generalized Nizhnik-Novikov-Veselov Equation[J]. Communications in Theoretical Physics, 2018 , 70(05) : 521 -528 . DOI: 10.1088/0253-6102/70/5/521

References

[1] M. Boiti, J. J. P. Leon, M. Manna, and F. Pempinelli, Inverse Probl. 2(1986) 271.

[2] R. Radha and M. Lakshmanan, J. Math. Phys. 35(1994) 4746.

[3] Y. Peng, Phys. Lett. A 337(2005) 55.

[4] K. C. Senthil, R. Radha, and M. Lakshmanan, arXiv:nlin.SI/0701044(2007).

[5] X. R. Hu and Y. Chen, Commun. Theor. Phys. 56(2011) 218.

[6] X. R. Hu and Y. Chen, Z. Naturforsch 70(2015) 729.

[7] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equation and Inverse Scattering, Cambridge, New York (1991).

[8] R. Hirota, J. Math. Phys. 14(1973) 805.

[9] M. R. Miura, Bäcklund Transformation, Springer, Berlin (1978).

[10] B. Tian and Y. T. Gao, Phys. Lett. A 209(1995) 297.

[11] S. Y. Lou, Math. Meth. Appl. Sci. 18(1995) 789.

[12] E. G. Fan and H. Q. Zhang, Phys. Lett. A 246(1998) 403.

[13] A. Kundu, A. Mukherjee, and T. Naskar, arXiv:nlin.SI/1204.0916(2015).

[14] B. Ren, X. P. Cheng, and J. Lin, Nonlinear Dyn. 86(2016) 1855.

[15] B. Ren, Commun. Nonlinear Sci. Numer. Simulat. 42(2017) 456.

[16] W. X. Ma, Phys. Lett. A 379(2015) 1975.

[17] J. B. Zhang and W. X. Ma, Comput. Math. Appl. 74(2017) 591.

[18] J. Y. Yang and W. X. Ma, Nonlinear Dyn. 89(2017) 1539.

[19] X. E. Zhang, Y. Chen, and Y. Zhang, Comput. Math. Appl. 74(2017) 2341.

[20] L. L. Huang and Y. Chen, Commun. Theor. Phys. 67(2017) 473.

[21] M. D. Chen, X. Li, Y. Wang, and B. Li, Commun. Theor. Phys. 67(2017) 595.

[22] X. E. Zhang and Y. Chen, Commun. Nonlinear Sci. Numer. Simulat. 52(2017) 24.

[23] X. E. Zhang and Y. Chen, Nonlinear Dyn. 90(2017) 755.

[24] X. Y. Tang, S. Y. Lou, and Y. Zhang, Phys. Rev. E 66(2002) 046601.

[25] X. Y. Tang and S. Y. Lou, J. Math. Phys. 44(2003) 4000.

[26] S. Y. Lou, J. Phys. A:Math. Gen. 35(2002) 10619.

[27] J. P. Ying, Commun. Theor. Phys. 35(2001) 405.

[28] Z. Y. Ma and C. L. Zheng, Commun. Theor. Phys. 43(2005) 993.

[29] H. Ono and I. Nakata, J. Phys. Soc. Jpn. 63(1994) 40.

[30] V. N. Serkin, V. M. Chapela, J. Percino, and T. L. Belyaeva, Opt. Commun. 192(2001) 237.

[31] A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23(1973) 142.

[32] H. Lamb, Hydrodynamics, Dover, New York (1945).

[33] R. J. Donnelly, Quantized Vortices in Helium Ⅱ, Cambridge, New York (1991).

[34] J. Denschlag, J. E. Simsarian, and D. L. Feder, Science 287(2000) 97.

[35] J. Y. Wang, X. P. Cheng, X. Y. Tang, et al., Phys. Plasmas 21(2014) 032111.
Outlines

/