With the aid of the truncated Painlevé expansion, a set of rational solutions of the (2+1)-dimensional generalized Nizhnik-Novikov-Veselov (GNNV) equation with the quadratic function which contains one lump soliton is derived. By combining this quadratic function and an exponential function, the fusion and fission phenomena occur between one lump soliton and a stripe soliton which are two kinds of typical local excitations. Furthermore, by adding a corresponding inverse exponential function to the above function, we can derive the solution with interaction between one lump soliton and a pair of stripe solitons. The dynamical behaviors of such local solutions are depicted by choosing some appropriate parameters.
Zheng-Yi Ma, Jin-Xi Fei, Jun-Chao Chen
. Lump and Stripe Soliton Solutions to the Generalized Nizhnik-Novikov-Veselov Equation[J]. Communications in Theoretical Physics, 2018
, 70(05)
: 521
-528
.
DOI: 10.1088/0253-6102/70/5/521
[1] M. Boiti, J. J. P. Leon, M. Manna, and F. Pempinelli, Inverse Probl. 2(1986) 271.
[2] R. Radha and M. Lakshmanan, J. Math. Phys. 35(1994) 4746.
[3] Y. Peng, Phys. Lett. A 337(2005) 55.
[4] K. C. Senthil, R. Radha, and M. Lakshmanan, arXiv:nlin.SI/0701044(2007).
[5] X. R. Hu and Y. Chen, Commun. Theor. Phys. 56(2011) 218.
[6] X. R. Hu and Y. Chen, Z. Naturforsch 70(2015) 729.
[7] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equation and Inverse Scattering, Cambridge, New York (1991).
[8] R. Hirota, J. Math. Phys. 14(1973) 805.
[9] M. R. Miura, Bäcklund Transformation, Springer, Berlin (1978).
[10] B. Tian and Y. T. Gao, Phys. Lett. A 209(1995) 297.
[11] S. Y. Lou, Math. Meth. Appl. Sci. 18(1995) 789.
[12] E. G. Fan and H. Q. Zhang, Phys. Lett. A 246(1998) 403.
[13] A. Kundu, A. Mukherjee, and T. Naskar, arXiv:nlin.SI/1204.0916(2015).
[14] B. Ren, X. P. Cheng, and J. Lin, Nonlinear Dyn. 86(2016) 1855.
[15] B. Ren, Commun. Nonlinear Sci. Numer. Simulat. 42(2017) 456.
[16] W. X. Ma, Phys. Lett. A 379(2015) 1975.
[17] J. B. Zhang and W. X. Ma, Comput. Math. Appl. 74(2017) 591.
[18] J. Y. Yang and W. X. Ma, Nonlinear Dyn. 89(2017) 1539.
[19] X. E. Zhang, Y. Chen, and Y. Zhang, Comput. Math. Appl. 74(2017) 2341.
[20] L. L. Huang and Y. Chen, Commun. Theor. Phys. 67(2017) 473.
[21] M. D. Chen, X. Li, Y. Wang, and B. Li, Commun. Theor. Phys. 67(2017) 595.
[22] X. E. Zhang and Y. Chen, Commun. Nonlinear Sci. Numer. Simulat. 52(2017) 24.
[23] X. E. Zhang and Y. Chen, Nonlinear Dyn. 90(2017) 755.
[24] X. Y. Tang, S. Y. Lou, and Y. Zhang, Phys. Rev. E 66(2002) 046601.
[25] X. Y. Tang and S. Y. Lou, J. Math. Phys. 44(2003) 4000.
[26] S. Y. Lou, J. Phys. A:Math. Gen. 35(2002) 10619.
[27] J. P. Ying, Commun. Theor. Phys. 35(2001) 405.
[28] Z. Y. Ma and C. L. Zheng, Commun. Theor. Phys. 43(2005) 993.
[29] H. Ono and I. Nakata, J. Phys. Soc. Jpn. 63(1994) 40.
[30] V. N. Serkin, V. M. Chapela, J. Percino, and T. L. Belyaeva, Opt. Commun. 192(2001) 237.
[31] A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23(1973) 142.
[32] H. Lamb, Hydrodynamics, Dover, New York (1945).
[33] R. J. Donnelly, Quantized Vortices in Helium Ⅱ, Cambridge, New York (1991).
[34] J. Denschlag, J. E. Simsarian, and D. L. Feder, Science 287(2000) 97.
[35] J. Y. Wang, X. P. Cheng, X. Y. Tang, et al., Phys. Plasmas 21(2014) 032111.