Welcome to visit Communications in Theoretical Physics,
Mathematical Physics and Quantum Information

A Practical E-Payment Protocol Based on Quantum Multi-Proxy Blind Signature

Expand
  • 1. College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China;
    2. School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
    3. Teaching and Research Section of Political, PLA Information Engineering University, Luoyang 471003, China

Received date: 2018-03-26

  Revised date: 2018-06-07

  Online published: 2018-11-01

Supported by

Supported by the National Natural Science Foundation of China under Grant Nos. 61402275, 61402015, 61273311, the Natural Science Foundation of Shaanxi Province under Grant Nos. 2015JM6263, 2016JM6069 and the Fundamental Research Funds for the Central Universities under Grant No. GK201402004

Abstract

A practical E-payment protocol is presented in this paper. It is based on quantum multi-proxy blind signature. Adopting the techniques of quantum key distribution, one-time pad and quantum multi-proxy blind signature, our E-payment system could protect user's anonymity as the traditional E-payment systems do, and also have unconditional security, which the classical E-payment systems can not provide. Furthermore, compared with the existing quantum E-payment systems, this practical system could not only support mobile E-payment transactions but also inter-bank transactions.

Cite this article

Xu-Feng Niu, Jian-Zhong Zhang, Shu-Cui Xie, Bu-Qing Chen . A Practical E-Payment Protocol Based on Quantum Multi-Proxy Blind Signature[J]. Communications in Theoretical Physics, 2018 , 70(05) : 529 -533 . DOI: 10.1088/0253-6102/70/5/529

References

[1] D. Chaum, Lect. Notes. Comput. Sc. 15(1983) 199.

[2] D. Chaum and E. Heyst, Lect. Notes. Comput. Sc. 547(1991) 257.

[3] G. Maitland and C. Boyd, Lect. Notes. Comput. Sc. 2229(2001) 461.

[4] S. Canard and J. Traor, Lect. Notes. Comput. Sc. 2727(2003) 237.

[5] J. Traor, ACISP99, Lect. Notes. Comput. Sc. 1587(1999) 228.

[6] W. Qiu, K. Chen, and D. Gu, ISC 2002, Lect. Notes. Comput. Sc. 2433(2002) 177.

[7] P. W. Shor, SIAM J. Comput. 26(1997) 1484.

[8] L. K. Grover, arXiv:quant-ph/9605043.

[9] X. J. Wen and Z. Nie, Phys. Scripa. 82(2010) 5468.

[10] X. J. Wen, Y. Z. Chen, and J. B. Fang, Quantum Inf. Process. 12(2013) 549.

[11] X. Q. Cai and C. Y. Wei, Quantum Inf. Process. 12(2013) 1651.

[12] A. X. Shao, J. Z. Zhang, and S. C. Xie, Int. J. Theor. Phys. 56(2017) 1241.

[13] G. B. Xu, Int. J. Theor. Phys. 54(2015) 2605.

[14] W. Guo, J. Z. Zhang, Y. P. Li, and W. An, Int. J. Theor. Phys. 55(2016) 3524.

[15] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85(2000) 441.

[16] D. Mayers and J. Assoc, J. Acm. 48(2001) 351.

[17] H. K. Lo, J. Phys. A-Math. Gen. 34(2012) 6957.

[18] H. Inamon, N. Lutkenhaus, and D. Mayers, Eur. Phys. J. D 41(2007) 599.

[19] G. S. Paraoanu and H. Scutaru, Phys. Rev. A 61(1999) 180.

[20] Y. S. Weinstein, Phys. Rev. A 79(2009) 1744.
Outlines

/