Welcome to visit Communications in Theoretical Physics,
Mathematical Physics and Quantum Information

Convective Heat and Mass Transfer in Magneto Jeffrey Fluid Flow on a Rotating Cone with Heat Source and Chemical Reaction

Expand
  • 1. Department of Mathematics, College of Sciences, King Khalid University, Abha, 61413, Saudia Arabia;
    2. Department of Mathematics, Quaid-e-Azam University, 45320, Islamabad 44000, Pakistan;
    3. Department of Mathematics, Central University of Karnataka, Kalaburagi-585367, India

Received date: 2018-04-18

  Revised date: 2018-06-10

  Online published: 2018-11-01

Abstract

The present paper addresses the megnetohydrodynamic Jeffrey fluid flow with heat and mass transfer on an infinitely rotating upright cone. Inquiry is carried out with heat source/sink and chemical reaction effects. Further, constant thermal and concentration flux situations are imposed. Optimal homotopy analysis method (OHAM) is employed to achieve series solutions of the concerned differential equations. Important results of the flow phenomena are explored and deliberated by means of graphs and numerical tables. It is perceived that thermal boundary layer thickness possess contrast variations for the heat source and heat sink, respectively. The chemical reaction enhances the heat transfer rate but decline the mass transfer rate. Moreover, the precision of the existing findings is verified by associating them with the previously available work.

Cite this article

S. Saleem, M. M. Al-Qarni, S. Nadeem, N. Sandeep . Convective Heat and Mass Transfer in Magneto Jeffrey Fluid Flow on a Rotating Cone with Heat Source and Chemical Reaction[J]. Communications in Theoretical Physics, 2018 , 70(05) : 534 -540 . DOI: 10.1088/0253-6102/70/5/534

References

[1] R. Ellahi, M. M. Bhatti, and I. Pop, Int. J. Numer. Methods for Heat and Fluid Flow. 26(2016) 1802.

[2] Tanzila Hayat and S. Nadeem, Results Phys. 8(2018) 394.

[3] M. Qasim and S. Noreen, Eur. Phys. J. Plus 7(2014) 129.

[4] M. Qasim, Eur. Phys. J. Plus 129(2014) 24.

[5] S. U. Rahman, R. Ellahi, S. Nadeem, and Q. M. Z. Zia, J. Mol. Liq. 218(2016) 484.

[6] Z. H. Khan, M. Qasim, Naeema Ishfaq, and W. A. Khan, Commun. Theor. Phys. 67(2017) 449.

[7] D. Anilkumar and S. Roy, Appl. Math. Comput. 155(2004) 545.

[8] A. M. Rashad, B. Mallikarjuna, A. J. Chamkha, and S. Hariprasad Raju, Afrika Mat. 27(2016) 1409.

[9] C. Sulochana, G. P. Ashwinkumar, and N. Sandeep, Int. J. Adv. Sci. Technol. 86(2016) 61.

[10] S. Nadeem and S. Saleem, J. Taiwan Inst. Chem. Eng. 44(2013) 596.

[11] Sadia Siddiqa, Gul-e-Hina Naheed Begum, S. Saleem, and M. A. Hossain, Int. J. Heat and Mass Transfer. 101(2016) 608.

[12] C. S. K. Raju and N. Sandeep, J. Mol. Liq. 215(2016) 115.

[13] S. Saleem, S. Nadeem, and R. VL Haq, Eur. Phys. J. Plus. 129(2014) 129.

[14] M. Sheikholeslami, Int. J. Hydrogen Energy 42(2017) 821.

[15] M. Sheikholeslami and D. D. Ganji, Int. J. Hydrogen Energy 42(2017) 2748.

[16] N. Sandeep, C. Sulochana, C. S. K. Raju, et al., Appl. Math. 10(2015) 312.

[17] M. Sheikholeslami and R. Ellahi, Int. J. Heat and Mass Transfer 89(2015) 799.

[18] E. M. Sparrow and R. D. Cess, J. Appl. Mech. 29(1962) 181.

[19] M. A. Hamad and I. Pop, Transp. Porous Med. 87(2011) 25.

[20] E. Magyari and Ali J. Chamkha, Int. J. Thermal Sci. 49(2010) 1821.

[21] Khalil Ur Rehman, Ali Saleh Alshomrani, and M. Y. Malik, Case Stud. Therm. Eng. 12(2018) 16.

[22] S. J. Liao, Adv. Mech. 153(2008) 1.

[23] S. J. Liao, Commun. Nonlinear Sci. Numer. Simu. 15(2010) 2003.

[24] S. Nadeem, R. Mehmood, and N. S. Akbar, Int. J. Thermal Sci. 78(2014) 90.

[25] S. Abbasbandy, Phys. Lett. A 360(2016) 109.

[26] R. Ellahi, Appl. Math. Modell. 37(2013) 1451.

[27] S. Nadeem and S. Saleem, Infor. Sci. Lett. 3(2014) 55.

[28] R. Ellahi and A. Riaz, Math. Comput. Model. 52(2010) 1783.

[29] M. M. Rashidi, A. M. Siddiqui, and M. Asadi, Math. Probl. Eng. 2010(2010) 1.

[30] S. Nadeem and S. Saleem, J. Taiwan Inst. Chem. Eng. 44(2013) 596.

[31] S. Saleem, S. Nadeem, and M. Awais, J. Aerospace Eng. 29(2016) 04016009.

[32] Aisha Anjum, N. A. Mir, M. Farooq, et al., Results Phys. 9(2018) 955.

[33] S. Saleem, M. Awais, S. Nadeem, et al., Chin. J. Phys. 55(2017) 1615.

[34] S. Nadeem and S. Saleem, Results Phys. 4(2014) 54.

[35] M. Sheikholeslami, M. Hatami, and D. D. Ganji, J. Mol. Liq. 194(2014) 30.
Outlines

/