Welcome to visit Communications in Theoretical Physics,
Mathematical Physics and Quantum Information

Scattering and Bound States of the Dirac Particle for q-Parameter Hyperbolic Pöschl-Teller Potential

Expand
  • 1. Theoretical Physics group, Department of Physics, University of Port Harcourt, P. M. B. 5323, Choba Port Harcourt, Nigeria;
    2. Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria;
    3. Physics Department, University of Benin, Benin City, Edo State, Nigeria

Received date: 2018-03-05

  Revised date: 2018-04-16

  Online published: 2018-11-01

Abstract

The one-dimensional Dirac particle for equal scalar and vector asymmetric q-parameter hyperbolic PöschlTeller potential (qHPT) is solved in terms of hypergeometric functions. The scattering and bound states are obtained by using the properties of the equation of continuity of the wave functions. We calculat in details the transmission and reflection coefficients.

Cite this article

M. C. Onyeaju, A. N. Ikot, C. A. Onate, H. P. Obong, O. Ebomwonyi . Scattering and Bound States of the Dirac Particle for q-Parameter Hyperbolic Pöschl-Teller Potential[J]. Communications in Theoretical Physics, 2018 , 70(05) : 541 -551 . DOI: 10.1088/0253-6102/70/5/541

References

[1] H. Yanar, A. Havare, and K. Sogut, Adv. High Energy Phys. 2014(2014) 840907.

[2] E. Maghsoodi, H. Hassanabadi, and Places. Zarrinkamar, Few-Body Syst. 53(2012) 525, doi:10.1007/s00601-012-0314-5.

[3] S. Alpdogan and A. Havare, Adv. High Energy Phys. 2014(2014) 973847.

[4] A. Diaz-Torres and W. Scheid, Nucl. Phys. A 757(2005) 373.

[5] H. Erkol and E. Demiralp, Phys. Lett. A 365(2007) 55.

[6] J. N. Ginocchio, Phys. Rev. Lett. 78(1997) 436.

[7] J. N. Ginocchio, Phys. Rep. 414(2005) 165.

[8] H. Kleinpoppen, B. Lohmann, A. Grum-Grzhimailo, and U. Becker, Adv. At. Mol. Opt. Phys. 51(2005) 471.

[9] A. K. Motovilov, S. A. Sofianos, and E. A. Kolganova, Chem. Phys. Lett. 275(1997) 168.

[10] D. R. Frankl, Progress in Surface Science 13(1983) 285.

[11] J. N. Ginocchio and D. G. Madland, Phys. Rev. C 57(1998) 1167.

[12] J. I. Márquez Damián, J. R. Granada, and D. C. Malaspina, Phys. Procedia 60(2014) 300.

[13] K. T. Hecht and A. Adler, Nucl. Phys. A 137(1969) 129.

[14] T. J. Gay, Advances In Atomic, Molecular, and Optical Physics 57(2009) 157.

[15] D. Bessis, E. R. Vrscay, and C. R. Handy, J. Phys. A 20(1987) 419.

[16] P. R. Page, T. Goldman, and J. N. Ginocchio, Phys. Rev. Lett. 86(2001) 204.

[17] A. Arima, M. Harvey, and K. Shimizu, Phys. Lett. B 30(1969) 517.

[18] K. Bakke and C. Furtado, Phys. Lett. A 376(2012) 1269.

[19] Y. B. Band and Y. Avishai, 13-Low-Dimensional Quantum Systems, Academic Press, New York (2013) 749-823, ISBN:978-0-444-53786-7.

[20] K. J. A. Reijnders, T. Tudorovskiy, and M. I. Katsnelson, Annals Phys. 333(2013) 155.

[21] J. Cayssol, Compt. Ren. Phys. 14(2013) 760.

[22] G. Giavaras and F. Nori, Phys. Rev. B 83(2011) 165427.

[23] Y. Zahidi, A. Jellal, H. Bahlouli, and M. El Bouziani, J. Stat. Mech. 1742(2014) P10027, doi:10.1088/1742-5468/2014/10/P10027

[24] J. T. Wang, G. L. Zhao, D. Bagayoko, et al., World J Condensed Matter Phys. 3(2013) 144

[25] M. J. Bueno, J. Lemos de Melo, C. Furtado, and A. M. de M. Carvalho, Eur. Phys. J. Plus 129(2014) 201, DOI 10.1140/epjp/i2014.

[26] S. M Raeis-Zadeh and S. Safavi-Naeini, Eur. Phys. J. B 86(2013) 295.

[27] H. Hassanabadi, E. Maghsoodi, N. Salehi, et al., Eur. Phys. J. Plus 128(2013) 127.

[28] H. Hassanabadi, E. Maghsoodi, and S. Zarrinkamar, Eur. Phys. J. Plus 127(2012) 31.

[29] E. Maghsoodi, H. Hassanabadi, and O. Aydogdu, Phys. Scr. 86(2012) 015005.

[30] H. Hassanabadi, E. Maghsoodi, and Places. Zarrinkamar, Commun. Theor. Phys. 58(2012) 807.

[31] A. S. de Castro, A. Armat, and H. Hassanabadi, Eur. Phys. J. Plus 129(2014) 216.

[32] C. S. Jia, T. Chen, and L. G. Cui, Phys. Lett. A 373(2009) 1621, Doi:10.1016/j.physleta.2009.03.006.

[33] B. J. Falaye and S. M. Ikhdair, Chin. Phys. B 22(2013) 060305.

[34] D Agboola, Pramana 76(2011) 875.

[35] H. Hassanabadi and B. H. Yazarloo, Indian J. Phys. 87(2013) 1017.

[36] H. Hassanabadi, H. B. Yazarloo, and L. L. Lu, Chin. Phys. Lett. 29(2012) 020305.

[37] C. S. Jia, L-H. Zhang, and X. L. Peng, Int. J. Quantum Chem. 117(2017) E25383.

[38] B. Tang and C. S. Jia, Eur. Phys. J. Plus 132(2017) 375.

[39] C. S. Jia, C. W. Wang, L. H. Zhang, et al., Chem. Phys. Lett. 692(2018) 57.

[40] C. S. Jia, L. H. Zhang, and C. W. Wang, Chem. Phys. Lett. 667(2017) 211.

[41] J. F. Wang, X. L. Peng, L. H. Zhang, et al., Chem. Phys. Lett. 686(2017) 131.

[42] X. Q. Song, C. W. Wang, and C. S. Jia, Chem. Phys. Lett. 673(2017) 50.

[43] B. C. Lütfüoðlu, F. Akdeniz, and O. Bayrak, J. Maths Phys. 57(2016) 032103, doi:10.1063/1.4943298.

[44] A. Bohr, I. Hamamoto, and B. R. Mottelson, Physica Scripta 26(1982) 267.

[45] C. G. Van de Walle, Phys. Rev. B 39(1991) 1871.

[46] X. Zhang, M. Gharbi, P. Sharma, and H. T. Johnson, Int. J. Solids Struct. 46(2009) 3810.

[47] M. C. Onyeaju, A. N. Ikot, E. O. Chukwuocha, et al., Few-Body Syst. 57(2016) 823, doi:10.1007/s00601-016-1122-0.

[48] A. N. Ikot, H. P. Obong, I. O. Owate, et al., Adv. High Energy Phys. 2015(2015) 632603, doi:10.1155/2015/632603.
Outlines

/