Superstrong static electric fields could deform Coulomb barriers between α clusters and daughter nuclei, and bring up the possibility of speeding up α decays. We adopt a simplified model for the spherical α emitter 212Po and study its responses to superstrong static electric fields. We find that superstrong electric fields with field strengths|E|~ 0:1 MV/fm could turn the angular distribution of α emissions from isotropic to strongly anisotropic, and speed up α decays by more than one order of magnitude. We also study the influences of superstrong electric fields along the Poisotope chains, and discuss the implications of our studies on α decays in superstrong monochromatic laser fields. The study here might be helpful for future theoretical studies of α decay in realistic superstrong laser fields.
Dong Bai, Zhong-Zhou Ren
. α Decays in Superstrong Static Electric Fields[J]. Communications in Theoretical Physics, 2018
, 70(05)
: 559
-564
.
DOI: 10.1088/0253-6102/70/5/559
[1] G. Gamow, Z. Phys. 51(1928) 204.
[2] R. Gurney and E. Condon, Nature (London) 122(1928) 439.
[3] D. S. Delion, Theory of Particle and Cluster Emission, Springer-Verlag, Berlin (2010).
[4] D. S. Delion, Z. Ren, A. Dumitrescu, and D. Ni, J. Phys. G 45(2018) 053001.
[5] Extreme Light Infrastructure (ELI), www.eli-laser.eu.
[6] Extreme Light Infrastructure-Nuclear Physics (ELINP), www.eli-np.ro.
[7] H. M. Castañeda Cortes, Doctoral thesis, University of Heidelberg (2011).
[8] H. M. Castañeda Cortes, C. Muller, C. H. Keitel, and A. Palffy, Phys. Lett. B 723(2013) 401,[arXiv:1207.2395[nucl-th]].
[9] S. Misicu and M. Rizea, J. Phys. G 40(2013) 095101.
[10] I. V. Kopytin and A. S. Kornev, Phys. At. Nucl. 77(2014) 53.
[11] S. Misicu and M. Rizea, Open Phys. 14(2016) 81.
[12] D. S. Delion and S. A. Ghinescu, Phys. Rev. Lett. 119(2017) 202501(2017).
[13] D. P. Kis and R. Szilvasi, J. Phys. G 45(2018) 045103.
[14] D. Bai, D. Deng, and Z. Ren, Nucl. Phys. A 976(2018) 23,[arXiv:1805.02379[nucl-th]].
[15] M. H. Mittleman, Introduction to the Theory of Laseratom Interactions 2-nd ed., Plenum Press, New York (1993).
[16] C. J. Joachain, N. J. Kylstra, and R. M. Potvliege, Atoms in intense laser fields, Cambridge University Press, Cambridge (2011).
[17] D. S. Delion, Phys. Rev. C 80(2009) 024310,[arXiv:0907.2304[nucl-th]].
[18] K. Varga, R. G. Lovas, and R. J. Liotta, Phys. Rev. Lett. 69(1992) 37.
[19] D. S. Delion, A. Insolia, and R. J. Liotta, Phys. Rev. C 46(1992) 1346.
[20] G. Röpke, et al., Phys. Rev. C 90(2014) 034304.
[21] C. Xu, et al., Phys. Rev. C 93(2016) 011306,[arXiv:1511.07584[nucl-th]].
[22] V. E. Viola, G. T. Seaborg, and J. Inorg, Nucl. Chem. 28(1966) 741.
[23] S. A. Gurvitz and G. Kalbermann, Phys. Rev. Lett. 59(1987) 262.
[24] S. A. Gurvitz, Phys. Rev. A 38(1988) 1747.
[25] H. Friedrich, Theoretical Atomic Physics, 4-th ed., Springer International Publishing AG, Gewerbestrasse (2017).
[26] H. Geiger and J. M. Nuttall, Philos. Mag. 22(1911) 613.
[27] L. V. Keldysh, Sov. Phys. JETP 20(1965) 1307.
[28] A. Fedotov, N. Narozhny, G. Mourou, and G. Korn, Phys. Rev. Lett. 105(2010) 080402.
[29] E. Nerush, I. Kostyukov, A. Fedotov, et al., Phys. Rev. Lett. 106(2011) 035001.
[30] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Rev. Mod. Phys. 84(2012) 1177.
[31] N. B. Narozhny and A. M. Fedotov, Contemp. Phys. 56(2015) 249.
[32] M. Tamburini, A. Di Piazza, and C. H. Keitel, Sci. Rep. 7(2017) 5694.
[33] T. J. Burvenich, J. Evers, and C. H. Keitel, Phys. Rev. Lett. 96(2006) 142501,[nucl-th/0601077].
[34] Large Hadron Collider, homepage at https://home.cern/topics/large-hadron-collider.
[35] Circular Electron-Positron Collider, homepage at http://cepc.ihep.ac.cn.