Welcome to visit Communications in Theoretical Physics,
Nuclear Physics

α Decays in Superstrong Static Electric Fields

Expand
  • 1. School of Physics, Nanjing University, Nanjing 210093, China;
    2. School of Physics Science and Engineering, Tongji University, Shanghai 200092, China

Received date: 2018-07-01

  Revised date: 2018-07-29

  Online published: 2018-11-01

Supported by

Supported by the National Natural Science Foundation of China under Grant Nos. 11535004, 11761161001, 11375086, 11120101005, 11175085 and 11235001, the National Key R&D Program of China under Grant No. 2018YFA0404403, the National Major State Basic Research and Development of China, under Grant No. 2016YFE0129300, and the Science and Technology Development Fund of Macau under Grant No. 008/2017/AFJ

Abstract

Superstrong static electric fields could deform Coulomb barriers between α clusters and daughter nuclei, and bring up the possibility of speeding up α decays. We adopt a simplified model for the spherical α emitter 212Po and study its responses to superstrong static electric fields. We find that superstrong electric fields with field strengths|E|~ 0:1 MV/fm could turn the angular distribution of α emissions from isotropic to strongly anisotropic, and speed up α decays by more than one order of magnitude. We also study the influences of superstrong electric fields along the Poisotope chains, and discuss the implications of our studies on α decays in superstrong monochromatic laser fields. The study here might be helpful for future theoretical studies of α decay in realistic superstrong laser fields.

Cite this article

Dong Bai, Zhong-Zhou Ren . α Decays in Superstrong Static Electric Fields[J]. Communications in Theoretical Physics, 2018 , 70(05) : 559 -564 . DOI: 10.1088/0253-6102/70/5/559

References

[1] G. Gamow, Z. Phys. 51(1928) 204.

[2] R. Gurney and E. Condon, Nature (London) 122(1928) 439.

[3] D. S. Delion, Theory of Particle and Cluster Emission, Springer-Verlag, Berlin (2010).

[4] D. S. Delion, Z. Ren, A. Dumitrescu, and D. Ni, J. Phys. G 45(2018) 053001.

[5] Extreme Light Infrastructure (ELI), www.eli-laser.eu.

[6] Extreme Light Infrastructure-Nuclear Physics (ELINP), www.eli-np.ro.

[7] H. M. Castañeda Cortes, Doctoral thesis, University of Heidelberg (2011).

[8] H. M. Castañeda Cortes, C. Muller, C. H. Keitel, and A. Palffy, Phys. Lett. B 723(2013) 401,[arXiv:1207.2395[nucl-th]].

[9] S. Misicu and M. Rizea, J. Phys. G 40(2013) 095101.

[10] I. V. Kopytin and A. S. Kornev, Phys. At. Nucl. 77(2014) 53.

[11] S. Misicu and M. Rizea, Open Phys. 14(2016) 81.

[12] D. S. Delion and S. A. Ghinescu, Phys. Rev. Lett. 119(2017) 202501(2017).

[13] D. P. Kis and R. Szilvasi, J. Phys. G 45(2018) 045103.

[14] D. Bai, D. Deng, and Z. Ren, Nucl. Phys. A 976(2018) 23,[arXiv:1805.02379[nucl-th]].

[15] M. H. Mittleman, Introduction to the Theory of Laseratom Interactions 2-nd ed., Plenum Press, New York (1993).

[16] C. J. Joachain, N. J. Kylstra, and R. M. Potvliege, Atoms in intense laser fields, Cambridge University Press, Cambridge (2011).

[17] D. S. Delion, Phys. Rev. C 80(2009) 024310,[arXiv:0907.2304[nucl-th]].

[18] K. Varga, R. G. Lovas, and R. J. Liotta, Phys. Rev. Lett. 69(1992) 37.

[19] D. S. Delion, A. Insolia, and R. J. Liotta, Phys. Rev. C 46(1992) 1346.

[20] G. Röpke, et al., Phys. Rev. C 90(2014) 034304.

[21] C. Xu, et al., Phys. Rev. C 93(2016) 011306,[arXiv:1511.07584[nucl-th]].

[22] V. E. Viola, G. T. Seaborg, and J. Inorg, Nucl. Chem. 28(1966) 741.

[23] S. A. Gurvitz and G. Kalbermann, Phys. Rev. Lett. 59(1987) 262.

[24] S. A. Gurvitz, Phys. Rev. A 38(1988) 1747.

[25] H. Friedrich, Theoretical Atomic Physics, 4-th ed., Springer International Publishing AG, Gewerbestrasse (2017).

[26] H. Geiger and J. M. Nuttall, Philos. Mag. 22(1911) 613.

[27] L. V. Keldysh, Sov. Phys. JETP 20(1965) 1307.

[28] A. Fedotov, N. Narozhny, G. Mourou, and G. Korn, Phys. Rev. Lett. 105(2010) 080402.

[29] E. Nerush, I. Kostyukov, A. Fedotov, et al., Phys. Rev. Lett. 106(2011) 035001.

[30] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Rev. Mod. Phys. 84(2012) 1177.

[31] N. B. Narozhny and A. M. Fedotov, Contemp. Phys. 56(2015) 249.

[32] M. Tamburini, A. Di Piazza, and C. H. Keitel, Sci. Rep. 7(2017) 5694.

[33] T. J. Burvenich, J. Evers, and C. H. Keitel, Phys. Rev. Lett. 96(2006) 142501,[nucl-th/0601077].

[34] Large Hadron Collider, homepage at https://home.cern/topics/large-hadron-collider.

[35] Circular Electron-Positron Collider, homepage at http://cepc.ihep.ac.cn.
Outlines

/