Welcome to visit Communications in Theoretical Physics,
Gravitation Theory, Astrophysics and Cosmology

Mathematical Model of Relativistic Anisotropic Compact Stellar Model Admitting Linear Equation of State

Expand
  • Department of Mathematics, Budge Budge Institute of Technology, Kolkata-700137, India

Received date: 2018-03-26

  Revised date: 2018-06-26

  Online published: 2018-11-01

Abstract

In present paper, a static, spherically symmetric, anisotropic stellar object has been discussed by assuming a linear relationship between the matter density ρ and radial pressure pr. The interior solution is continuously matched with the exterior Schwarzschild vacuum solution at the junction interface. Various physical features viz. energy conditions, mass-radius relationship, stability are analyzed for our stellar model. By assigning some particular value to the arbitrary constants we have obtained a model of compact star of radius 6.7 km. and mass 1.148 M⊙, which is very close to the observational data of the compact star Her X-1 proposed by Rawls et al.[Rawls, et al., Astrophys. J. 730 (2011) 25]. We have obtained that the model satisfies all the regularity conditions. We have found that our proposed model is stable as well as singularity-free.

Cite this article

Sumita Banerjee . Mathematical Model of Relativistic Anisotropic Compact Stellar Model Admitting Linear Equation of State[J]. Communications in Theoretical Physics, 2018 , 70(05) : 585 -592 . DOI: 10.1088/0253-6102/70/5/585

References

[1] M. S. R. Delgaty and K. Lake, Comput. Phys. Commun. 115(1998) 395.

[2] R. Ruderman, Annu. Rev. Astron. Astrophys. 10(1972) 427.

[3] R. Kippenhahn and A. Weigert, Stellar Structure and Evolution, Springer Verlag, Berlin (1990).

[4] A. I. Sokolov, JETP 79(1980) 1137.

[5] R. F. Sawyer, Phys. Rev. Lett. 29(1972) 382.

[6] K. Dev and M. Gleiser, Gen. Relativ. Gravit. 34(2002) 1793.

[7] M. K. Gokhroo and A. L. Mehra, Gen. Relativ. Grav. 26(1994) 75.

[8] H. A. Buchdahl, Phys. Rev. 116(1959) 1027.

[9] Paschalis Karageorgis and John G Stalker, Class. Quantum Grav. 25(2008) 195021.

[10] Håkan Andréasson and C. G. Böhmer, Class. Quantum Grav. 26(2009) 195007.

[11] P. Bhar, F. Rahaman, R. Biswas, and Hafiza Ismat Fatima, Commun. Theor. Phys. 62(2014) 221.

[12] M. R. Finch and J. E. F. Skea, Class. Quantum. Grav. 6(1989) 467.

[13] Piyali Bhar, Astrophys Space Sci. 356(2015) 309.

[14] P. Bhar and F. Rahaman, Eur. Phys. J. C 75(2015) 41.

[15] P. Bhar, F. Rahaman, S. Ray, and V. Chatterjee, Eur. Phys. J. C 75(2015) 190.

[16] K. Komathiraj and S. D. Maharaj, Int. J. Mod. Phys. D 16(2007) 1803.

[17] L. K. Patel and N. P. Mehta, Aust. J. Phys. 48(1995) 635.

[18] S. Thirukkanesh and S. D. Maharaj, Class. Quant. Grav. 25(2008) 235001.

[19] S. K. Maurya, Y. K. Gupta, F. Rahaman, et al., Annals Phys. 385(2017) 532.

[20] A. Banerjee, S. Banerjee, Sudan Hansraj, and Ali Ovgun, Eur. Phys. J. Plus 132(2017) 150.

[21] P. Bhar, Md. Hassan Murad, and N. Pant, Astrophys. Space Sci. 359(2015) 13.

[22] Piyali Bhar, Eur. Phys. J. C 75(2015) 123.

[23] P. C. Vaidya and R. Tikekar, J. Astrophys. Astron. 3(1982) 325.

[24] R. Sharma and S. D. Maharaj, Mon. Not. Roy. Astron. Soc. 375(2007) 1265.

[25] B. V. Ivanov, Phys. Rev. D 65(2002) 104001.

[26] G. Darmois, Memorial des Sciences Mathematiques XXV, Fasticule XXV ch V, Gauthier-Villars, Paris, France (1927).

[27] W. Israel, Nuovo Cimento B 44(1966) 1; ibid. B 48(1966) 463.

[28] C. Lanczos, Ann. Phys. (Leipzig) 74(1924) 518.

[29] N. Sen, Ann. Phys. (Berlin) 378(1924) 365.

[30] G.P. Perry and R. B. Mann, Gen. Relativ. Gravit. 24(1992) 305.

[31] P. Musgrave and K. Lake, Class. Quantum Gravity 13(1996) 1885.

[32] H. Bondi, Proc. R. Soc. London A 281(1964) 39.

[33] R. Chan, L. Herrera, and N. O. Santos, Mon. Not. R. Astron. Soc. 265(1993) 533.

[34] H. Abreu, H. Hernndez, L. A. Nez, Class. Quantum Gravity 24(2007) 4631.

[35] Rawls, et al. ApJ 730(2011) 25.

[36] H. Andréasson, Commun. Math. Phys. 288(2009) 715.
Outlines

/