Welcome to visit Communications in Theoretical Physics,
Gravitation Theory, Astrophysics and Cosmology

Relic Density of Asymmetric Dark Matter in Modified Cosmological Scenarios

Expand
  • School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China

Received date: 2018-05-22

  Revised date: 2018-08-09

  Online published: 2018-11-01

Supported by

Supported by the National Natural Science Foundation of China under Grant Nos. 11365022 and 11765021

Abstract

We discuss the relic abundance of asymmetric Dark Matter particles in modified cosmological scenarios where the Hubble rate is changed with respect to the standard cosmological scenario. The modified Hubble rate leaves its imprint on the relic abundance of asymmetric Dark Matter particles if the asymmetric Dark Matter particles freeze-out in this era. For generality we parameterize the modification of the Hubble rate and then calculate the relic abundance of asymmetric Dark Matter particles and anti-particles. We find the abundances for the Dark Matter particles and anti-particles are enhanced in the modified cosmological models. The indirect detection signal is possible for the asymmetric Dark Matter particles due to the increased annihilation rate in the modified cosmological models. Applying Planck data, we find the constraints on the parameters of the modified cosmological models.

Cite this article

Hoernisa Iminniyaz, Burhan Salai, Guo-Liang Lv . Relic Density of Asymmetric Dark Matter in Modified Cosmological Scenarios[J]. Communications in Theoretical Physics, 2018 , 70(05) : 602 -508 . DOI: 10.1088/0253-6102/70/5/602

References

[1] P. A. R. Ade, et al.[Planck Collaboration], Astron. Astrophys. 594(2016) A13,[arXiv:1502.01589[astro-ph.CO]].

[2] S. Nussinov, Phys. Lett. B 165(1985) 55; K. Griest and D. Seckel, Nucl. Phys. B 283(1987) 681; R. S. Chivukula and T. P. Walker, Nucl. Phys. B 329(1990) 445; D. B. Kaplan, Phys. Rev. Lett. 68(1992) 742; D. Hooper, J. March-Russell, and S. M. West, Phys. Lett. B 605(2005) 228,[arXiv:hep-ph/0410114]; JCAP 0901(2009) 043,[arXiv:0811.4153v1[hep-ph]]; H. An, S. L. Chen, R. N. Mohapatra, and Y. Zhang, J. High Energy Phys. 1003(2010) 124,[arXiv:0911.4463[hep-ph]]; T. Cohen and K. M. Zurek, Phys. Rev. Lett. 104(2010) 101301,[arXiv:0909.2035[hep-ph]]. D. E. Kaplan, M. A. Luty, and K. M. Zurek, Phys. Rev. D 79(2009) 115016,[arXiv:0901.4117[hep-ph]]; T. Cohen, D. J. Phalen, A. Pierce, and K. M. Zurek, Phys. Rev. D 82(2010) 056001,[arXiv:1005.1655[hep-ph]]; J. Shelton and K. M. Zurek, Phys. Rev. D 82(2010) 123512,[arXiv:1008.1997[hepph]].

[3] A. Belyaev, M. T. Frandsen, F. Sannino, and S. Sarkar, Phys. Rev. D 83(2011) 015007,[arXiv:1007.4839].

[4] M. L. Graesser, I. M. Shoemaker, and L. Vecchi, J. High Energy Phys. 1110(2011) 110,[arXiv:1103.2771[hepph]].

[5] H. Iminniyaz, M. Drees, and X. Chen, JCAP 1107(2011) 003,[arXiv:1104.5548[hep-ph]].

[6] R. Catena, N. Fornengo, A. Masiero, et al., Phys. Rev. D 70(2004) 063519,[arXiv:astro-ph/0403614].

[7] P. Salati, Phys. Lett. B 571(2003) 121,[astroph/0207396].

[8] F. Rosati, hep-ph/0309124.

[9] S. Profumo and P. Ullio, JCAP 0311(2003) 006,[hepph/0309220].

[10] C. Pallis, JCAP 0510(2005) 015,[hep-ph/0503080].

[11] L. Randall and R. Sundrum, Phys. Rev. Lett. 83(1999) 4690, doi:10.1103/PhysRevLett.83.4690[hepth/9906064].

[12] H. Stoica, S. H. H. Tye, and I. Wasserman, Phys. Lett. B 482(2000) 205,[hep-th/0004126].

[13] E. Abou El Dahab and S. Khalil, J. High Energy Phys. 0609(2006) 042,[hep-ph/0607180].

[14] N. Okada and O. Seto, Phys. Rev. D 70(2004) 083531,[hep-ph/0407092].

[15] A. Arbey, A. Deandrea, and A. Tarhini, J. High Energy Phys. 1105(2011) 078,[arXiv:1103.3244[hep-ph]].

[16] A. Arbey and F. Mahmoudi, Phys. Lett. B 669(2008) 46,[arXiv:0803.0741[hep-ph]].

[17] F. D'Eramo, N. Fernandez, and S. Profumo, JCAP 1705(2017) 012. doi:10.1088/1475-7516/2017/05/012[arXiv:1703.04793[hep-ph]].

[18] M. Kamionkowski and M. S. Turner, Phys. Rev. D 42(1990) 3310.

[19] J. D. Barrow, Nucl. Phys. B 208(1982) 501.

[20] H. Iminniyaz and X. Chen, Astropart. Phys. 54(2014) 125,[arXiv:1308.0353[hep-ph]].

[21] G. B. Gelmini, J. H. Huh, and T. Rehagen, JCAP 1308(2013) 003,[arXiv:1304.3679[hep-ph]].

[22] S. Z. Wang, H. Iminniyaz, and M. Mamat, Int. J. Mod. Phys. A 31(2016) 1650021,[arXiv:1503.06519[hep-ph]].

[23] M. T. Meehan and I. B. Whittingham, JCAP 1406(2014) 018,[arXiv:1403.6934[astro-ph.CO]].

[24] H. Abdusattar and H. Iminniyaz, Commun. Theor. Phys. 66(2016) 363,[arXiv:1505.03716[hep-ph]].

[25] H. Iminniyaz, Phys. Lett. B 765(2017) 6,[arXiv:1604. 04251[hep-ph]].

[26] R. J. Scherrer and M. S. Turner, Phys. Rev. D 33(1986) 1585, Erratum-ibid. D 34(1986) 3263.

[27] M. Ackermann, et al.,[Fermi-LAT Collaboration], Phys. Rev. D 89(2014) 042001,[arXiv:1310.0828[astroph.HE]].

[28] M. Schelke, R. Catena, N. Fornengo, et al., Phys. Rev. D 74(2006) 083505, doi:10.1103/PhysRevD.74.083505[hepph/0605287].

[29] S. Dutta and R. J. Scherrer, Phys. Rev. D 82(2010) 083501, doi:10.1103/PhysRevD.82.083501[arXiv:1006. 4166[astro-ph.CO]].

[30] R. Durrer, AIP Conf. Proc. 782(2005) 202, doi:10.1063/1.2032732[hep-th/0507006].
Outlines

/