Welcome to visit Communications in Theoretical Physics,
Atomic, Molecular, Optical (AMO) and Plasma Physics, Chemical Physics

Linear Analyses of Langmuir and EM Waves in Relativistic Hot Plasmas

Expand
  • 1. Department of Physics, Jinggangshan University, Ji'an 343009, China;
    2. Library, Jinggangshan University, Ji'an 343009, China

Received date: 2017-10-17

  Revised date: 2017-12-25

  Online published: 2018-11-01

Supported by

Supported by the National Natural Science Foundation of China under Grant Nos. 11064005 and 51460020, and the financial support provided by the Key Subject of Atomic and Molecular Physics in Jiangxi Province (2011-1015).

Abstract

The linear Langmuir and electromagnetic (EM) waves in relativistic hot plasmas are discussed, and the dispersion relations are obtained based on the covariant Maxwell's and fluid equations. When kBT/mc2>1, the effective mass of electrons will be increased obviously. As the results, many other influences are induced, such as the decrease of the plasmas frequency and the critical frequency, the reduction of the electron sound velocity and the electrons' oscillation velocity, and so on. Numerical results show that these influences can affect the dispersion relations of Langmuir and EM waves seriously even in linear regime.

Cite this article

Qiang-Lin Hu, Xiao-Bin Luo, Gui-Lan Xiao, Wen Hu, Ji-Chang Peng, Shen-Lin Zhou . Linear Analyses of Langmuir and EM Waves in Relativistic Hot Plasmas[J]. Communications in Theoretical Physics, 2018 , 70(05) : 609 -612 . DOI: 10.1088/0253-6102/70/5/609

References

[1] N. E. Andreev, L. M. Gorbunov, P. Mora, et al., Phys. Plasmas 14(2007) 083104.

[2] W. Fox, G. Fiksel, A. Bhattacharjee, et al., Phys. Rev. Lett. 111(2013) 225002.

[3] M. Marklund and P. K. Shukla, Rev. Mod. Phys. 78(2006) 591.

[4] Qiang-Lin Hu, Gui-Lan Xiao, Xiao-Guang Yu, et al., Phys. Lett. A 377(2013) 2594.

[5] H. C. Barr, P. Mason, and D. M. Parr, Phys. Rev. Lett. 83(1999) 1606.

[6] G. Li, R. Yan, C. Ren, et al., Phys. Rev. Lett. 100(2008) 125002.

[7] G. Li, R. Yan, C. Ren, et al., Phys. Plasmas 18(2011) 042703.

[8] K. C. Tzeng and W. B. Mori, Phys. Rev. Lett. 81(1998) 104.

[9] S. M. Weng, M. Liu, Z. M. Sheng, et al., Scientific Reports 6(2016) 22150.

[10] M. Lontano, S. Bulanov, and J. Koga, Phys. Plasmas 8(2001) 5113.

[11] Qiang-Lin Hu, Zhong-Ping Chen, and S. M. Mahajan, Phys. Lett. A 381(2017) 869.

[12] G. Li, W. B. Mori, and C. Ren, Phys. Rev. Lett. 110(2013) 155002.

[13] N. C. Lee and C. R. Choi, Phys. Plasmas 14(2007) 022307.

[14] Y. Zhao, J. Zheng, M. Chen, et al., Phys. Plasmas 21(2014) 112114.

[15] M. Tribeche, S. Boukhalfa, and T. H. Zerguini, Phys. Plasmas 17(2010) 082309.

[16] N. C. Lee, Phys. Plasmas 19(2012) 082303.

[17] J. A. Bittencourt, Fundamentals of Plasma Physics, Springer, New York (2004).
Outlines

/