We theoretically investigate the thermoelectric properties of a three-terminal double-dot interferometer with Rashba spin-orbit interaction. It is found that with some temperature distributions a thermal spin current can even be produced without the help of magnetic flux and by tuning the spin interference effect in the system, a pure spin or fully spin-polarized current can be driven by temperature differences. For the cases that two of the terminals are held at the same temperature, the charge (spin) thermopower and the charge (spin) figure of merit are defined and calculated in the linear response regime. With some choices of the system parameters the calculated spin and charge thermopowers are of the same order of magnitude and the charge figure of merit can exceed 1.
Feng Liang, Ben-Ling Gao, Guang Song, Yu Gu
. Spin Thermoelectric Effects in a Three-Terminal Double-Dot Interferometer[J]. Communications in Theoretical Physics, 2018
, 70(05)
: 625
-632
.
DOI: 10.1088/0253-6102/70/5/625
[1] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat. Mater. 11(2012) 391.
[2] H. M. Yu, S. D. Brechet, and J. P. Ansermet, Phys. Lett. A 381(2017) 825.
[3] K. Uchida, S. Takahashi, K. Harii, et al., Nature (London) 455(2008) 778.
[4] C. M. Jaworski, J. Yang, S. Mack, et al., Nat. Mater. 9(2010) 898.
[5] S. Bosu, Y. Sakuraba, K. Uchida, et al., Phys. Rev. B 83(2011) 224401.
[6] W. W. Lin, K. Chen, S. F. Zhang, and C. L. Chien, Phys. Rev. Lett. 116(2016) 186601.
[7] Y. J. Chen and S. Y. Huang, Phys. Rev. Lett. 117(2016) 247201.
[8] S. Seki, T. Ideue, M. Kubota, et al., Phys. Rev. Lett. 115(2015) 266601.
[9] W. J. Gong, A. Du, Y. Wang, and X. H. Chen, J. Phys. Soc. Jpn. 82(2013) 014603.
[10] Y. Dubi and M. Di Ventra, Phys. Rev. B 79(2009) 081302(R).
[11] P. Trocha and J. Barna?, Phys. Rev. B 85(2012) 085408.
[12] J. Zheng, F. Chi, and Y. Guo, J. Phys.:Condens. Matter 24(2012) 265301.
[13] L. Gu, H. H. Fu, and R. Q. Wu, Phys. Rev. B 94(2016) 115433.
[14] X. F. Yang and Y. S. Liu, J. Appl. Phys. 113(2013) 164310.
[15] X. K. Hong, Y. S. Liu, J. F. Feng, and J. H. Chu, J. Appl. Phys. 114(2013) 144309.
[16] H. H. Fu and K. L. Yao, Europhys. Lett. 103(2013) 57011.
[17] Y. S. Liu, F. Chi, Y. F. Yang, and J. F. Feng, J. Appl. Phys. 109(2011) 053712.
[18] Y. S. Liu, X. K. Hong, J. F. Feng, and Y. F. Yang, Nanoscale. Res. Lett. 6(2011) 618.
[19] H. F. Lü, S. S. Ke, and H. W. Zhang, Europhys. Lett. 95(2011) 57009.
[20] G. B. Zhang, Y. X. Wang, and Y. L. Yan, Solid State Commun. 159(2013) 98.
[21] G. Gómez-Silva, O.ávalos-Ovando, M. L. Ladrón de Guevara, and P.A. Orellana, Phys. E:Low-dimens. Syst. Nanostruct. 63(2014) 311.
[22] B. Liu, Y. Y. Li, J. Zhou, et al., Phys. E:Low-dimens. Syst. Nanostruct. 80(2016) 163.
[23] Q. F. Sun and X. C. Xie, Phys. Rev. B 71(2005) 155321.
[24] F. Chi and J. Zheng, Appl. Phys. Lett. 92(2008) 062106.
[25] F. Chi, J. Zheng, and L. L. Sun, Appl. Phys. Lett. 92(2008) 172104.
[26] H. F. Lü and Y. Guo, Appl. Phys. Lett. 91(2007) 092128.
[27] W. J. Gong and Y. S. Zheng, Phys. E:Low-dimens. Syst. Nanostruct. 41(2009) 574.
[28] W. J. Gong, S. Fan, Francis N. Kariuki, et al., J. Appl. Phys. 111(2012) 013705.
[29] Q. F. Sun, J. Wang, and H. Guo, Phys. Rev. B 71(2005) 165310.
[30] M. Büttiker, Phys. Rev. Lett. 57(1986) 1761.
[31] Y. Meir and Ned S. Wingreen, Phys. Rev. Lett. 68(1992) 2512.
[32] B. R. Bulka and P. Stefanski, Phys. Rev. Lett. 86(2006) 5128.
[33] Q. F. Sun and X. C. Xie, Phys. Rev. B 73(2006) 235301.
[34] P. K. Misra, Physics of Condensed Matter, Peking University Press, Beijing (2014).
[35] F. H. Qi, Y. B. Ying, and G. J. Jin, Phys. Rev. B 83(2011) 075310.
[36] R. Swirkowicz, M. Wierzbicki, and J. Barnas, Phys. Rev. B 80(2009) 195409.
[37] Y. S. Liu, Y. R. Chen, and Y. C. Chen, ASC Nano 3(2009) 3497.