Welcome to visit Communications in Theoretical Physics,
Other

Hierarchical Human Action Recognition with Self-Selection Classifiers via Skeleton Data

Expand
  • 1. School of Computer and Information, Anqing Normal University, Anqing 246133, China;
    2. The Key Laboratory of Intelligent Perception and Computing of Anhui Province, Anqing 246133, China;
    3. School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, China

Received date: 2018-04-30

  Revised date: 2018-07-16

  Online published: 2018-11-01

Supported by

Supported by the National Nature Science Foundation of China under Grant Nos. 11475003, 61603003, and 11471093; the Key Project of Cultivation of Leading Talents in Universities of Anhui Province under Grant No. gxfxZD2016174; Funds of Integration of Cloud Computing and Big Data; Innovation of Science and Technology of Ministry of Education of China under Grant No. 2017A09116; and Anhui Provincial Department of Education Outstanding Top-Notch Talent-Funded Project under Grant No. gxbjZD26

Abstract

Human action recognition has become one of the most active research topics in human-computer interaction and artificial intelligence, and has attracted much attention. Here, we employ a low-cost optical sensor Kinect to capture the action information of the human skeleton. We then propose a two-level hierarchical human action recognition model with self-selection classifiers via skeleton data. Especially different optimal classifiers are selected by probability voting mechanism and 10 times 10-fold cross validation at different coarse grained levels. Extensive simulations on a well-known open dataset and results demonstrate that our proposed method is efficient in human action recognition, achieving 94.19% the average recognition rate and 95.61% the best rate.

Cite this article

Ben-Yue Su, Huang Wu, Min Sheng, Chuan-Sheng Shen . Hierarchical Human Action Recognition with Self-Selection Classifiers via Skeleton Data[J]. Communications in Theoretical Physics, 2018 , 70(05) : 633 -640 . DOI: 10.1088/0253-6102/70/5/633

References

[1] J. K. Aggarwal, ACM Computing Surveys 43(2011) 16.

[2] J. Zhang, W. Li, P. O. Ogunbona, et al., Pattern Recogn. 60(2016) 86.

[3] L. Chen, H. Wei, and J. Ferryman, Pattern Recognition Lett. 34(2013) 1995.

[4] G. Johansson, Scintific American 232(1975) 76.

[5] M. Müller, T. Röder, and M. Clausen, Acm Trans. Graph. 24(2005) 677.

[6] A. W. Vieira, T. Lewiner, W. R. Schwartz, et al., Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), (2012) 2934.

[7] W. Li, Z. Zhang, and Z. Liu, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Workshops, (2010) 9.

[8] X. Yang and Y. L. Tian, Proceedings of Computer Vision and Pattern Recognition, (2012) 14.

[9] L. Xia, C. C. Chen, and J. K. Aggarwal, IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, (2012) 20.

[10] C. Ellis, S. Z. Masood, M. F. Tappen, et al., Int. J. Comput. Vision 101(2013) 420.

[11] A. Shahroudy, J. Liu, T. T. Ng, et al., The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016) 1010.

[12] H. Wang and L. Wang, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017) 3633.

[13] Y. Y. Lin, J. H. Hua, N. C. Tang, et al., The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2014) 2617.

[14] Y. Du, W. Wang, and L. Wang, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2015) 1110.

[15] T. T. Thanh, F. Chen, K. Kotani, et al., Fund. Inform. 130(2014) 247.

[16] Z. Zhang, Microsoft Kinect Sensor and Its Effect, IEEE Computer Society Press, Washington (2012).

[17] G. T. Papadopoulos, A. Axenopoulos, and P. Daras, Proceedings of the International Conference on Multimedia Modeling (2014) 473.

[18] T. Hastie and R. Tibshirani, J. Roy. Stat. Soc. B 58(1996) 155.

[19] M. L. Zhang and Z. H. Zhou, Pattern Recogn. 40(2007) 2038.

[20] I. Rish, J. Univers. Comput. Sci. 1(2001) 127.

[21] J. R. Quinlan, C4.5:Programs for Machine Learning, Morgan Kaufmann, San Francisco, CA (1993).

[22] L. Breiman, J. Friedman, C. J. Stone, et al., CRC Press, Boca Raton (1984).

[23] M. A. Hearst, S. T. Dumais, E. Osuna, et al., IEEE Intelligent Systems and Their Applications 13(1998) 18.

[24] A. Liaw and M. Wiener, R News 2(2002) 18.

[25] M. C. Mozer, Complex Systems 3(1989) 349.

[26] Y. Freund, R. Schapire, and N. Abe, Journal of Japanese Society For Artificial Intelligence 14(1999) 1612.

[27] L. Breiman, Mach. Learn. 24(1996) 123.

[28] T. K. Ho, IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1998) 832.

[29] S. R. Eddy, Curr. Opin. Struct. Biol. 6(1996) 361.

[30] S. Hochreiter and J. Schmidhuber, Neural Comput. 9(1997) 1735.

[31] J. Wang, Z. Liu, J. Chorowski, et al., Proceedings of European Conference on Computer Vision (2012) 872.

[32] J. Wang, Z. Liu, Y. Wu, et al., The IEEE Conference on Computer Vision and Pattern Recognition, (2012) 1290.

[33] O. Oreifej and Z. Liu, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2013) 716.

[34] C. Wang, Y. Wang, and A. L. Yuille, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2013) 915.

[35] H. Rahmani, A. Mahmood, D. Q. Huynh, et al., Proceedings of European Conference on Computer Vision (2014) 742.

[36] R. Vemulapalli, F. Arrate, and R. Chellappa, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2014) 588.

[37] M. Barnachon, S. Bouakaz, B. Boufama, et al., Pattern Recogn. 47(2014) 238.

[38] I. Kapsouras and N. Nikolaidis, J. Vis. Commun. Image R. 25(2014) 1432.

[39] H. Chen, G. Wang, J. H. Xue, et al., Pattern Recogn. 55(2016) 148.
Outlines

/