1 Introduction
2 Model of the Atomic System
Fig. 1 (Color online) (a) Schematic of five levels energy diagram driven by three coherent control fields and probe field. (b) Mach-Zehnder type sagnac interferometer is shown. |
3 Results and Discussion
Fig. 2 (Color online) Refractive index of surface plasmon polariton vs. conductivity $\gamma=10$ MHz, $\Delta_p=0\gamma$, $\Delta_{1,2}=0\gamma$, $\gamma_{31,41,51}=2\gamma$, $o_{15}=1$, $\varphi(\varphi_{i=1,2,3})=0$, $\omega_p=1000\gamma$. (a) $\Omega_{2,3}=2\gamma$, $\Omega_1=2\gamma,4\gamma,6\gamma,8\gamma,10\gamma, 12\gamma$; (b) $\Omega_{1,2}=2\gamma$. $\Omega_3=5\gamma,10\gamma,15\gamma,20\gamma,25\gamma,30\gamma$. |
Fig. 3 (Color online) Phase velocity and transit times can be calculated from $v_p/c$ and $t\times c$ of surface plasmon polariton vs. conductivity $\gamma=10$ MHz, $\Delta_p=0\gamma$, $\Delta_{1,2}=0\gamma$, $\gamma_{31,41,51}=2\gamma$, $o_{15}=1$, $\varphi(\varphi_{i=1,2,3})=0$, $\omega_p=1000\gamma$ , $\Omega_{2,3}=2\gamma$. $\Omega_1=2\gamma,4\gamma,6\gamma,8\gamma,10\gamma, 12\gamma$. |
Fig. 4 (Color online) Relativistic velocity of surface plasmon polariton vs. conductivity $\gamma=10$ MHz, $\Delta_p=0\gamma$, $\Delta_{1,2}=0\gamma$, $\gamma_{31,41,51}=2\gamma$, $o_{15}=1$, $\varphi(\varphi_{i=1,2,3})=0$, $\omega_p=1000\gamma$. $\Omega_{2,3}=2\gamma$, $\Omega_1=2\gamma,4\gamma,6\gamma,8\gamma,10\gamma, 12\gamma$, $v=20$ m/s. |
Fig. 5 (Color online) Delays between two surface plasmon polariton vs. conductivity without and in the presence of Fizeaus dragging effect $\gamma=10$ MHz, $\Delta_p=0\gamma$, $\Delta_{1,2}=0\gamma$, $\gamma_{31,41,51}=2\gamma$, $o_{15}=1$, $\varphi(\varphi_{i=1,2,3})=0$, $\omega_p=1000\gamma$. $\Omega_{2,3}=2\gamma$. $\Omega_1=2\gamma,4\gamma,6\gamma,8\gamma,10\gamma, 12\gamma$, $v=20$ m/s. |
Fig. 6 (Color online) Phases shifts between two surface plasmon polariton waves vs. conductivity without and in the presence Fizeaus dragging effect $\gamma=10$ MHz, $\Delta_p=0\gamma$, $\Delta_{1,2}=0\gamma$, $\gamma_{31,41,51}=2\gamma$, $o_{15}=1$, $\varphi(\varphi_{i=1,2,3})=0$, $\omega_p=1000\gamma$. $\Omega_{2,3}=2\gamma$, $\Omega_1=2\gamma,4\gamma,6\gamma,8\gamma,10\gamma, 12\gamma$, $v=20$ m/s. |
Fig. 7 (Color online) Sensitivity vs. conductivity without and in the presence of Fizeaus dragging effect $\gamma=10$ MHz, $\Delta_p=0\gamma$, $\Delta_{1,2}=0\gamma$, $\gamma_{31,41,51}=2\gamma$, $o_{15}=1$, $\varphi(\varphi_{i=1,2,3})=0$, $\omega_p=1000\gamma$. $\Omega_{2,3}=2\gamma$, $\Omega_1=2\gamma,4\gamma,6\gamma,8\gamma,10\gamma, 12\gamma$, $v=20$ m/s. |
Fig. 8 (Color online) Fractional change in phase shifts and sensitivity vs. conductivity without and in the presence of Fizeaus dragging effect $\gamma=10$ MHz, $\Delta_p=0\gamma$, $\Delta_{1,2}=0\gamma$, $\gamma_{31,41,51}=2\gamma$, $o_{15}=1$, $\varphi(\varphi_{i=1,2,3})=0$, $\omega_p=1000\gamma$. $\Omega_{2,3}=2\gamma$, $\Omega_1=2\gamma,4\gamma,6\gamma,8\gamma,10\gamma, 12\gamma$, $v=20$ m/s. |