Nomenclature |
![]() |
1 Introduction
2 Mathematical Model
Fig.1 Streamlines mapped into (a) the physical domain $(x,y)$ and (b) the computational domain $\left( \xi, \eta \right) $ when $a=0.5,$ $% b=0.5,$ $d=1,$ $Q=1.5,$ $\phi =\pi /3, $ $M=0.9, Br=0.3$, and $\beta =0.4$. |
3 Solution Methodology and Validation
Tab. 1 Comparison between our numerical results and those given by software for $\psi _{y}^{2}\left( x,h_{2}\right) $ and $\psi _{y}^{2}\left( x,h_{1}\right) $ in the case where $% a=0.5,b=0.5,d=1,Q=1.5,x=0.1$ and $\phi =\pi /3.$ |
![]() |
Tab. 2 Comparison between our numerical results and those given by software for $\theta _{y}^{1}\left( x,h_{2}\right) $ and $% \theta _{y}^{1}\left( x,h_{1}\right) $ in the case where $% a=0.5,b=0.5,d=1,Q=1.5,x=0.1$ and $\phi =\pi /3.$ |
![]() |
Tab. 3 Comparison between our numerical results and the results of Srinivas and Kothandapani[29] for the ideal heat transfer coefficient $% Z=h_{1}^{(1)}\theta _{y}^{(1)}\left( x,h_{1}\right) $ in the case where $% \beta =0,b=0.6,d=1.5$ and $\phi =\pi /4.$ |
![]() |
4 Results and Discussions
Fig.2 Velocity profile $u\left( x,y\right) $ for different values of Hartmann number $M$, when $a=0.5,$ $b=0.5,$ $d=1,$ $Q=1.5,$ $x=0.1,$ $ \phi =\pi /3,$ $Br=0.3$, and $\beta =0.4.$ |
Fig.3 Velocity profile $u\left( x,y\right) $ for different values of electrical conductivity parameter $\beta $, when $a=0.5,$ $b=0.5,$ $d=1,$ $Q=1.5,$ $x=0.1,$ $\phi =\pi /3,$ $Br=0.3$, and $M=0.8.$ |
Fig.4 Temperature profile $\theta \left( x,y\right) $ for different values of Hartmann number $M$, when $a=0.5,$ $b=0.5,$ $d=1,$ $Q=1.5,$ $x=0.1,$ $\phi =\pi /3,$ $Br=0.3$, and $\beta =0.4.$ |
Fig.5 Temperature profile $\theta \left( x,y\right) $ for different values of electrical conductivity parameter $\beta $, when $a=0.5,$ $b=0.5,$ $d=1,$ $Q=1.5,$ $x=0.1,$ $\phi =\pi /3,$ $Br=0.3$, and $M=0.8.$ |
Fig.6 Temperature profile $\theta \left( x,y\right) $ for different values of Brinkman number $Br$, when $a=0.5,$ $b=0.5,$ $d=1,$ $Q=1.5,$ $x=0.1,$ $\phi =\pi /3,$ $\beta =0.3$, and $M=0.6.$ |
Fig.7 Variation of pressure gradient ${\rm d}p/{\rm d}x$ for different values of Hartmann number $M$, when $a=0.5,$ $b=0.5,$ $d=1,$ $Q=1.5,$ $x=0.1,$ $ \phi =\pi /3,$ $Br=0.3$, and $\beta =0.4.$ |
Fig.8 Variation of pressure gradient ${\rm d}p/{\rm d}x$ for different values of electrical conductivity parameter $\beta $, when $a=0.5,$ $b=0.5,$ $d=1,$ $Q=1.5,$ $x=0.1,$ $\phi =\pi /3,$ $Br=0.4$, and $\beta =0.8.$ |
Fig.9 Streamlines for different values of Hartmann number $M$,when $a=0.5,$ $b=0.5,$ $d=1,$ $Q=1.5,$ $x=0.1,$ $\phi =\pi /3,$ $Br=0.3$, and $\beta =0.4.$ |
Fig.10 Streamlines for different values of electrical conductivity parameter $\beta $, when $a=0.5,$ $b=0.5,$ $d=1,$ $Q=1.5,$ $x=0.1,$ $\phi =\pi /3,$ $Br=0.4$, and $M=0.8.$ |