1. Introduction
where β was the probability of the healthy individuals being the transmission individuals; Σ was the probability of the transmission individuals being the healthy individuals. Hence, system (
2. Basic reproduction number
and
According to the method of the next-generation matrix, we can know that
Therefore the basic regeneration number
3. The existence of equilibrium points
where
The coefficients of equation (
Next, several possibilities are discussed below.
(H1) Δ > 0. | |
(i) If m1 > 0, equation ( | |
(ii) If m1 < 0, equation ( | |
(iii) If m1 = 0, equation ( | |
(H2) Δ = 0. | |
(i) If m1 ≥ 0, equation ( | |
(ii) If m1 < 0, equation ( | |
(H3) Δ < 0. |
According to the above discussion, we obtain the following theorem.
For system (
i | (i)If $ \begin{eqnarray*}{E}_{1}^{* }=\left(1-\displaystyle \frac{-{m}_{1}+\sqrt{{m}_{1}^{2}-4{m}_{0}{m}_{2}}}{2{m}_{0}},\displaystyle \frac{-{m}_{1}+\sqrt{{m}_{1}^{2}-4{m}_{0}{m}_{2}}}{2{m}_{0}}\right).\end{eqnarray*}$ |
ii | (ii)If |
iii | (iii)If $ \begin{eqnarray*}{E}_{3}^{* }=\left(1-\displaystyle \frac{-{m}_{1}+\sqrt{{m}_{1}^{2}-4{m}_{0}{m}_{2}}}{2{m}_{0}},\displaystyle \frac{-{m}_{1}+\sqrt{{m}_{1}^{2}-4{m}_{0}{m}_{2}}}{2{m}_{0}}\right),\end{eqnarray*}$ $ \begin{eqnarray*}{E}_{4}^{* }=\left(1-\displaystyle \frac{-{m}_{1}-\sqrt{{m}_{1}^{2}-4{m}_{0}{m}_{2}}}{2{m}_{0}},\displaystyle \frac{-{m}_{1}-\sqrt{{m}_{1}^{2}-4{m}_{0}{m}_{2}}}{2{m}_{0}}\right).\end{eqnarray*}$ |
iv | (iv)If |
v | (v)If |
If
Under the condition of the third case in theorem
In addition, we have the following relationships
Therefore, theorem
For system (
i | (i)If |
ii | (ii)If |
iii | (iii)If |
4. Stability analysis of the equilibrium points
4.1. The stability analysis of rumor-free equilibrium point E0
Thus, the characteristic equation of the linearized system (
where
i | (i)When τ = 0, equation ( $ \begin{eqnarray}(\lambda +b)[\lambda -(\sigma +b)({R}_{0}-1)]=0.\end{eqnarray}$ Obviously, if R0 < 1, all eigenvalues of equation ( |
ii | (ii)When τ > 0 , we assume that λ = iω (ω > 0) is a root of equation ( $ \begin{eqnarray}\begin{array}{l}{\left(i\omega \right)}^{2}+{p}_{11}\omega i+{p}_{12}+({q}_{11}\omega i+{q}_{12})\\ \quad \times (\cos \omega \tau -i\sin \omega \tau )=0.\end{array}\end{eqnarray}$ Separating real and imaginary parts of equation ( $ \begin{eqnarray}\left\{\begin{array}{l}{\omega }^{2}-{p}_{12}={q}_{11}\omega \sin (\omega \tau )+{q}_{12}\cos (\omega \tau ),\\ {p}_{11}\omega ={q}_{12}\sin (\omega \tau )-{q}_{11}\omega \cos (\omega \tau ).\end{array}\right.\end{eqnarray}$ Squaring and adding the two equations of equation ( $ \begin{eqnarray}{\omega }^{4}+({p}_{11}^{2}-2{p}_{12}-{q}_{11}^{2}){\omega }^{2}+{p}_{12}^{2}-{q}_{12}^{2}=0,\end{eqnarray}$ where$ \begin{eqnarray*}\begin{array}{l}{p}_{11}^{2}-2{p}_{12}-{q}_{11}^{2}={b}^{2}+{\left(b-\beta \right)}^{2}-{\sigma }^{2},\\ {p}_{12}^{2}-{q}_{12}^{2}={b}^{2}[{\left(b-\beta \right)}^{2}-{\sigma }^{2}].\end{array}\end{eqnarray*}$ Let Z = ω 2, then equation ( $ \begin{eqnarray}{Z}^{2}+{f}_{01}Z+{f}_{02}=0,\end{eqnarray}$ where$ \begin{eqnarray*}{f}_{01}={p}_{11}^{2}-2{p}_{12}-{q}_{11}^{2},\ \ {f}_{02}={p}_{12}^{2}-{q}_{12}^{2}.\end{eqnarray*}$ Next, we denote $ \begin{eqnarray*}{F}_{1}(Z)={Z}^{2}+{f}_{01}Z+{f}_{02}.\end{eqnarray*}$ |
It can be transformed into the form as
Therefore,
Combining with equation (
Therefore,
For system (
i | (i)If |
ii | (ii)If |
4.2.The stability analysis of the rumor-prevailing equilibrium point ${E}_{1}^{* }$
The Jacobian matrix of system (
Thus, the characteristic equation of the linearized system (
where
i | (i)When τ = 0, equation ( $ \begin{eqnarray}{\lambda }^{2}+({p}_{22}+{q}_{22})\lambda +{p}_{21}+{q}_{21}=0.\end{eqnarray}$ Then $ \begin{eqnarray*}\begin{array}{rcl}{{\rm{\Delta }}}_{1} & = & 1\gt 0,\\ {{\rm{\Delta }}}_{2} & = & {p}_{22}+{q}_{22}=(2b-\beta )+2\beta {I}^{* }+\displaystyle \frac{\sigma }{{\left(1+\alpha {I}^{* }\right)}^{2}}.\end{array}\end{eqnarray*}$ If |
ii | (ii)When τ > 0, we assume that λ = iω is a root of equation ( $ \begin{eqnarray}\begin{array}{l}{\left(i\omega \right)}^{2}+{p}_{22}\omega i+{p}_{21}+({q}_{22}\omega i+{q}_{21})\\ \quad \times (\cos (\omega \tau )-i\sin (\omega \tau ))=0.\end{array}\end{eqnarray}$ Separating real and imaginary parts of equation ( $ \begin{eqnarray}\left\{\begin{array}{l}{\omega }^{2}-{p}_{21}={q}_{22}\omega \sin (\omega \tau )+{q}_{21}\cos (\omega \tau ),\\ {p}_{22}\omega ={q}_{21}\sin (\omega \tau )-{q}_{22}\omega \cos (\omega \tau ).\end{array}\right.\end{eqnarray}$ Squaring and adding the two equations of equation ( $ \begin{eqnarray}{\omega }^{4}+({p}_{22}^{2}-2{p}_{21}-{q}_{22}^{2}){\omega }^{2}+{p}_{21}^{2}-{q}_{21}^{2}=0,\end{eqnarray}$ where $ \begin{eqnarray*}\begin{array}{l}{p}_{22}^{2}-2{p}_{21}-{q}_{22}^{2}=4{\beta }^{2}{I}^{* 2}+2\beta (3b-2\beta ){I}^{* }+2b\beta {S}^{* }\\ \quad +\,2{b}^{2}-4b\beta +{\beta }^{2}-\displaystyle \frac{{\sigma }^{2}}{{\left(1+\alpha {I}^{* }\right)}^{4}},\end{array}\end{eqnarray*}$ $ \begin{eqnarray*}{p}_{21}^{2}-{q}_{21}^{2}={\left[b\beta ({I}^{* }-{S}^{* })+{b}^{2}\right]}^{2}-\displaystyle \frac{{\sigma }^{2}{b}^{2}}{{\left(1+\alpha {I}^{* }\right)}^{4}}.\end{eqnarray*}$ Let Z = ω2, then equation ( $ \begin{eqnarray}{Z}^{2}+{f}_{03}Z+{f}_{04}=0,\end{eqnarray}$ where $ \begin{eqnarray*}{f}_{03}={p}_{22}^{2}-2{p}_{21}-{q}_{22}^{2},{f}_{04}={p}_{21}^{2}-{q}_{21}^{2}.\end{eqnarray*}$ Next, we denote $ \begin{eqnarray*}{F}_{2}(Z)={Z}^{2}+{f}_{03}Z+{f}_{04}.\end{eqnarray*}$ In the following, we will discuss the positive roots of equation ( |
i | (i)If |
ii | (ii)If |
By calculating, we can get that
Therefore,
For system (
i | (i)If |
ii | (ii)If the conditions of (i) hold and further assume that |
iii | (iii)If the conditions of (i) hold and further assume that |
5. Numerical simulations
5.1. The stability of the rumor-free equilibrium point E0
Figure 1. The rumor-free equilibrium point E0 is stable when |
Figure 2. The rumor-free equilibrium point E0 is unstable when |
5.2. The stability of the rumor-prevailing equilibrium point ${E}_{1}^{* }$
Figure 3. The rumor-prevailing equilibrium point |
Figure 4. The rumor-prevailing equilibrium point |
5.3. The influence of infectious rate β on rumor propagation
Figure 5. The change of the density for transmission users with β = 0.58. |
Figure 6. The change of the density for transmission users with β = 0.63. |
Figure 7. The change of the density for transmission users with β = 0.67. |
5.4. The influence of cure rate Σ on rumor propagation
Figure 8. The change of the density for transmission users with Σ = 21. |
Figure 9. The change of the density for transmission users with Σ = 0.28. |
Figure 10. The change of the density for transmission users with Σ = 0.31. |