Welcome to visit Communications in Theoretical Physics,
Gravitation Theory, Astrophysics and Cosmology

P–v criticality and heat engine efficiency for Bardeen Einstein–Gauss–Bonnet AdS black hole

  • Runqian Ye ,
  • Jiachen Zheng ,
  • Juhua Chen ,
  • Yongjiu Wang
Expand
  • Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, China

Received date: 2019-09-23

  Revised date: 2019-10-24

  Accepted date: 2019-11-18

  Online published: 2020-03-09

Supported by

the National Science Foundation of China(U1731107)

Copyright

© 2020 Chinese Physical Society and IOP Publishing Ltd

Abstract

In this paper, we discuss the Pv criticality and the heat engine efficiency in the Bardeen Einstein–Gauss–Bonnet (EGB) AdS black hole space–time. From the Pv plane in the extended phase space, we find that the Bardeen EGB-AdS black hole conforms to Van der Waals (VdW) liquid–gas systems in the extended phase space, and $\tfrac{{P}_{c}{v}_{c}}{{T}_{c}}=0.369$ of the Bardeen EGB-AdS black hole system is between 0.3333 of the Gauss–Bonnet AdS black hole system and 0.375 of the VdW gas system in the 5-dimensions. Then we construct a heat engine by taking the Bardeen EGB-AdS black hole as the working substance, and consider a rectangle heat cycle in the Pv plane. We find that two cases with different Bardeen parameter e and Gauss–Bonnet parameter α both have the same situation, i.e. as the entropy difference between small black hole S1 and large black hole S2 increases, the heat engine efficiency will increase. Furthermore, as the Bardeen parameter e increases, the efficiency will decrease. However, for the Gauss–Bonnet parameter α, the result is contrary. By comparing with the well-know Carnot heat engine efficiency, we have found the efficiency ratio η/ηc versus entropy S2 is bounded below 1, so it is coincided with the thermodynamical second law.

Cite this article

Runqian Ye , Jiachen Zheng , Juhua Chen , Yongjiu Wang . P–v criticality and heat engine efficiency for Bardeen Einstein–Gauss–Bonnet AdS black hole[J]. Communications in Theoretical Physics, 2020 , 72(3) : 035401 . DOI: 10.1088/1572-9494/ab617f

1. Introduction

Over the past forty decades, some evidence can prove that we can get the quantum of space–time geometry connecting with classical thermodynamic theory by the black hole thermodynamics. The related work originated from Hawking and Bekenstein [15] which first defined the entropy and temperature for a black hole. Since then, the thermodynamic properties of the black hole have been widely studied [611]. In 1983, Hawking and Page [12] found a certain phase transition between the Schwarzschild black hole and thermal state, i.e. Hawking–Page phase transition. This has caused widespread attention about the thermodynamic properties of AdS black holes. Then, Chamblin et al [13, 14] studied the phase transition of the RN-AdS black hole and revealed the close relationship between the charged AdS black hole and the liquid–gas system.
In the original form of the first thermodynamical law for a black hole, there takes the black hole mass M to interpret as the internal energy U. And the first thermodynamical law for the charged rotating black hole is ${\rm{d}}{M}={T}{\rm{d}}{S}+{\rm{d}}{J}+{\rm{d}}{Q}$, where the entropy S and the temperature T dependent on the area of the event horizon A and the surface gravity κ, respectively. Ω is its angular velocity conjugate to the angular momentum J, and its electric potential Φ is conjugated to the charge Q.
Somewhat more recently the thermodynamics of AdS black hole has been widely studied in the extended phase space, in which the cosmological constant plays the role as the thermodynamic pressure [1518] $P=\tfrac{-{\rm{\Lambda }}}{8\pi }$ and its conjugate quantity is the thermodynamic volume. So we know that the black hole mass M is more like the enthalpy H rather than the internal energy U. Moreover we regard the cosmological constant as the thermodynamic pressure in first thermodynamical law, which makes it match the Smarr relation. The expansion VdP in the first law led to a more interesting development of the black hole thermodynamics. Since then, many studies about the black hole phase structure analogous to Van der Waals (VdW) liquid–gas systems in the extended phase space have been founded in different AdS black holes [1923].
The recent research on the black hole thermodynamics was holographic engine [24, 25]. It naturally makes the classic heat engine be introduced into the black hole thermodynamics because of the thermodynamic volume and pressure, which are defined in the extended phase space, are both dynamical variables and we can calculate mechanical work via the VdP term [24]. In this paper we give a brief review on the heat engine in curved black hole ground. The heat engine was constructed by defined a heat cycle which is a closed path in the Pv plane. During the working process, it was allowed the input of the amount of heat QH from warmer reservoirs (correspond to the temperature TH), and the output of the amount of heat QC into colder reservoirs (correspond to the temperature TC, TH > TC). A total mechanical work W is defined by W = QC − QH . So the efficiency of the heat engine is defined as $\eta =\tfrac{W}{{Q}_{H}}=1-\tfrac{{Q}_{C}}{{Q}_{H}}$. In the classic heat engines, it is well known that the efficiency of the Carnot heat engine is $\eta =1-\tfrac{{T}_{C}}{{T}_{H}}$. The holographic engine is described by the conformal field theory in the boundary [26]. And Johnson [24] creatively used the charged AdS black hole as heat engine working substances to construct a holographic heat engine and he calculated the heat engine efficiency. Then, the holographic heat engines were investigated in different black hole backgrounds, such as the Born–Infeld black hole [27], the 3-dimensional charged BTZ black hole [28], the rotating black hole [29] and the accelerating AdS black hole [30].
We all know that, under general conditions, the collapsed object with sufficient mass will undergo continuous gravitational collapse, leading to the formation of curvature singularities. This concept is called singularity theorems of Hawking and Penrose [31]. In the curvature singularity, there no longer exists the space–time and the physical properties. So we should use the quantum gravity to solve this problem. However, the quantum gravity is not yet fully mature, therefore some black holes without curvature singularity called ‘regular’ black holes are very interesting for physic scientists to investigate in the whole world. In 1968, Bardeen [32] acquired a black hole solution without the singularity and this is the well known black hole called Bardeen black hole. And so many studies on the physical properties of the regular black hole have been done. Such as the phase transition and geometrothermodynamics of regular electrically charged black hole in nonlinear electrodynamics theory coupled to general relativity have been investigated in [33]. In [34, 35], some authors have investigated the thermodynamics and geometrothermodynamics of regular Bardeen AdS black hole with a quintessence. Rajani [36] has made the Bardeen AdS black hole as work substance constructed a heat engine and also calculated the heat efficiency. In the present work, we will focus on the thermodynamics and the heat engine in the background of Bardeen AdS black hole in the Einstein–Gauss–Bonnet (EGB) theory. In [37, 38] Nam et al has investigated the extended phase space thermodynamics of regular charged AdS black hole in GaussCBonnet gravity, and charged AdS black holes in Gauss–Bonnet gravity and nonlinear electrodynamics. What is different from the work of Nam is that we are looking at higher dimensions. The EGB theory makes a generalization of Einstein’s general relativity to the higher dimensions by the heterotic string theory [39, 40]. The first EGB black hole solution was obtained by Boulware and Deser, and at r = 0 it is similar to its general relativity counterpart with a curvature singularity [41]. And the Bardeen AdS black hole in the EGB theory was obtained by Kumar and Singh [42].
This paper is organized as follows. In section 2, we take a bright review of the basic thermodynamics properties of the Bardeen EGB AdS black hole. In section 3, we study the Pv criticality of the Bardeen EGB-AdS black hole and draw the Pv diagram. In section 4, the heat engine efficiency of this system is studied. The results and discussions are presented in section 5.

2. The Bardeen AdS blackhole in the EGB theory

The action of the EGB gravity with the negative cosmological constant coupled to nonlinear electrodynamics [43] reads:
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal I }}_{G} & = & \displaystyle \frac{1}{2}{\displaystyle \int }_{M}{{\rm{d}}}^{D}x\sqrt{-g}\left[R+\alpha {{ \mathcal L }}_{{\rm{GB}}}\right.\\ & & \left.+\displaystyle \frac{(D-1)(D-2)}{{l}^{2}}+{ \mathcal L }(F)\right],\end{array}\end{eqnarray}$
where Λ = −(D − 1)(D − 2)/2l2 is the cosmological constant and α is the Gauss–Bonnet coupling coefficient with dimension [length]2. The discussion in our paper will take place when $\alpha \geqslant 0$ [44, 45]. The Gauss–Bonnet term (${ \mathcal L }({\rm{GB}})={R}_{\mu \nu \gamma \delta }{R}^{\mu \nu \gamma \delta }-4{R}_{\mu \nu }{R}^{\mu \nu }+{R}^{2}$) in four-dimension is a topological term, so the study is in over five-dimension [42]. The ${ \mathcal L }(F)$ is nonlinear electrodynamics function of Lorentz invariant, $F={F}_{\mu \nu }{F}^{\mu \nu }/4$, where ${F}_{\mu \nu }=2{{\rm{\nabla }}}_{{[}_{\mu }{A}_{\nu }]}$ (Aν is gauge potential).
From [42] we get the Lagrangian density of the matter field
$\begin{eqnarray}{ \mathcal L }(F)=\displaystyle \frac{1}{4{{se}}^{2}}{\left[\displaystyle \frac{\sqrt{2{e}^{2}F}}{1+\sqrt{2{e}^{2}F}}\right]}^{\displaystyle \frac{2D-3}{D-2}},\end{eqnarray}$
with
$\begin{eqnarray}s=\left\{\begin{array}{ll}\displaystyle \frac{{{e}}^{D-3}}{(D-1)\mu {{\prime} }^{D-3}}, & D={\rm{even}},\\ \displaystyle \frac{{{e}}^{D-3}}{(D-3)\mu {{\prime} }^{D-3}}, & D={\rm{odd}}.\end{array}\right.\end{eqnarray}$
In D-dimensional space–time we assume the metric as
$\begin{eqnarray}{{\rm{d}}{s}}^{2}=-f(r){{\rm{d}}{t}}^{2}+\displaystyle \frac{1}{f(r)}{{\rm{d}}{r}}^{2}+{r}^{2}{\tilde{\gamma }}_{{ij}}{{\rm{d}}{x}}^{i}{{\rm{d}}{x}}^{j},\end{eqnarray}$
where the ${\tilde{\gamma }}_{{ij}}$ is the metric of (D − 2)-dimensional constant curvature space k = 0, 1 or −1. And the solution of above action has been obtained as [42]:
$\begin{eqnarray}\begin{array}{l}{f}_{\pm }(r)=1+\displaystyle \frac{{r}^{2}}{2\tilde{\alpha }}(1\pm \sqrt{\displaystyle \frac{4\tilde{\alpha }\mu ^{\prime} }{{\left({r}^{D-2}+{e}^{D-2}\right)}^{\tfrac{D-1}{D-2}}-\tfrac{4\tilde{\alpha }}{{l}^{2}}}}),\\ D\geqslant 5\end{array}\end{eqnarray}$
with $\tilde{\alpha }=(D-3)(D-4)\alpha $, e is the charge constant and $\mu ^{\prime} $ is the mass of the black hole, which is related to the Arnowitt–Deser–Misner mass M with relation as [46]
$\begin{eqnarray}\mu ^{\prime} =\displaystyle \frac{16\pi M}{(D-2){V}_{D-2}}\ {\rm{with}}\ {\omega }_{D-2}=\displaystyle \frac{2{\pi }^{\tfrac{D-1}{2}}}{{\rm{\Gamma }}(D-1)/2}.\end{eqnarray}$
There are two cases of the black hole solutions which correspond to the sign (±) in front of the square in the equation (5). Here we only discuss the case for sign $(-)$. The mass, the Hawking temperature, and the entropy were obtained in [42] as
$\begin{eqnarray}M=\displaystyle \frac{(D-2){\omega }_{D-2}{r}_{+}^{D-3}}{16\pi }\left[\left(1+\displaystyle \frac{\tilde{\alpha }}{{r}_{+}^{2}}+\displaystyle \frac{{r}_{+}^{2}}{{l}^{2}}\right){\left(1+\displaystyle \frac{{e}^{D-2}}{{r}_{+}^{D-2}}\right)}^{\displaystyle \frac{D-1}{D-2}}\right]\end{eqnarray}$
$\begin{eqnarray}T=\displaystyle \frac{1}{4\pi {r}_{+}}\left[\displaystyle \frac{(D-3){r}_{+}^{2}+(D-5)\tilde{\alpha }-\tfrac{2{e}^{D-2}}{{r}_{+}^{D-2}}({r}_{+}^{2}+2\tilde{\alpha })+\tfrac{D-1}{{l}^{2}}{r}_{+}^{4}}{\left({r}_{+}^{2}+2\tilde{\alpha })(1+\tfrac{{e}^{D-2}}{{r}_{+}^{D-2}}\right)}\right]\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}S & = & \displaystyle \frac{(D-1){\omega }_{D-2}{\left(1+\tfrac{{e}^{D-2}}{{r}_{+}^{D-2}}\right)}^{\tfrac{D-1}{D-2}}{r}_{+}^{D-2}}{4}\\ & & \times \left[(D-4)\displaystyle \frac{{r}_{+}^{D-2}}{{e}^{D-2}}{H}_{1}+(D-3)\left[\displaystyle \frac{2\tilde{\alpha }}{{r}_{+}^{2}}{H}_{2}-(D-4){H}_{3}\right]\right.\\ & & \left.-(D-3)(D-4)\tilde{\alpha }\displaystyle \frac{{e}^{D-2}}{{r}_{+}^{D}}{H}_{4}\right]\end{array}\end{eqnarray}$
with
$\begin{eqnarray}\begin{array}{l}{H}_{1}{=}_{2}{F}_{1}\left[1,2,\displaystyle \frac{-(2D-5)}{(D-2)},-\displaystyle \frac{{r}_{+}^{D-2}}{{e}^{D-2}}\right],\\ {H}_{2}{=}_{2}{F}_{1}\left[1,\displaystyle \frac{3}{(D-2)},\displaystyle \frac{2}{(D-2)},-\displaystyle \frac{{e}^{D-2}}{{r}_{+}^{D-2}}\right],\\ {H}_{3}{=}_{2}{F}_{1}\left[1,1,\displaystyle \frac{(D-3)}{(D-2)},-\displaystyle \frac{{r}_{+}^{D-2}}{{e}^{D-2}}\right],\\ {H}_{4}{=}_{2}{F}_{1}\left[1,\displaystyle \frac{(D+1)}{(D-2)},\displaystyle \frac{D}{(D-2)},-\displaystyle \frac{{e}^{D-2}}{{r}_{+}^{D-2}}\right].\end{array}\end{eqnarray}$
With above quantities we can get the first law of thermodynamics as [47]
$\begin{eqnarray}{\rm{d}}{M}={T}{\rm{d}}{S}+{\rm{\Phi }}{\rm{d}}{e}+{\rm{\Psi }}{\rm{d}}\alpha .\end{eqnarray}$
In the extended phase space, it is necessary to consider the cosmological constant plays the role as the thermodynamic pressure $P=\tfrac{-{\rm{\Lambda }}}{8\pi }$, moreover the mass of black hole regarded as the enthalpy. As a consequence the extended first law of thermodynamics is
$\begin{eqnarray}{\rm{d}}{M}={T}{\rm{d}}{S}+{\rm{\Phi }}{\rm{d}}{e}+{V}{\rm{d}}{P}+{\rm{\Psi }}{\rm{d}}\alpha ,\end{eqnarray}$
where S is the entropy of the black hole, Φ is the potential and e is the charge constant and α is Gauss–Bonnet parameter whose conjugate is ψ. And the Smarr relation is
$\begin{eqnarray}(D-3)M=(D-2){TS}+{\rm{\Phi }}e-2{PV}+{\rm{\Psi }}\alpha ,\end{eqnarray}$

3. Pv criticality of Bardeen AdS-EGB black hole

In this section, we will discuss the Pv criticality of the Bardeen EGB-AdS black hole. We consider the cosmological constant as the thermodynamic pressure
$\begin{eqnarray}P=-\displaystyle \frac{{\rm{\Lambda }}}{8\pi }=\displaystyle \frac{(D-1)(D-2)}{16\pi {l}^{2}}.\end{eqnarray}$
Inputting equation (14) into (7), we can get the mass M as a function of pressure P
$\begin{eqnarray}\begin{array}{l}M({r}_{+},P)=\displaystyle \frac{(D-2){\omega }_{D-2}{r}_{+}^{D-3}}{16\pi }\left[\left(1+\displaystyle \frac{\tilde{\alpha }}{{r}_{+}^{2}}\right.\right.\\ \ \ \left.\left.+\displaystyle \frac{16\pi P}{(D-1)(D-2)}{r}_{+}^{2}\right){\left(1+\displaystyle \frac{{e}^{D-2}}{{r}_{+}^{D-2}}\right)}^{\tfrac{D-1}{D-2}}\right].\end{array}\end{eqnarray}$
The mass expression (15) reduces to the mass of D-dimensional Bardeen-AdS black hole [48] in the limit $\alpha \to 0$ as
$\begin{eqnarray}\begin{array}{l}M({r}_{+},P)=\displaystyle \frac{(D-2){\omega }_{D-2}{r}_{+}^{D-3}}{16\pi }\\ \ \times \,\left[\left(1+\displaystyle \frac{16\pi P}{(D-1)(D-2)}{r}_{+}^{2}\right){\left(1+\displaystyle \frac{{e}^{D-2}}{{r}_{+}^{D-2}}\right)}^{\tfrac{D-1}{D-2}}\right]\end{array}\end{eqnarray}$
we recover the mass of Schwarzschild–Tangherlini–AdS black holes in higher dimensions [49] when e = 0, α = 0, and we obtained the mass for the EGB-AdS black hole [50, 51] in the case of no charge (e = 0)
$\begin{eqnarray}\begin{array}{l}M({r}_{+},P)=\displaystyle \frac{(D-2){\omega }_{D-2}{r}_{+}^{D-3}}{16\pi }\\ \ \ \ \times \,\left(1+\displaystyle \frac{\tilde{\alpha }}{{r}_{+}^{2}}+\displaystyle \frac{16\pi P}{(D-1)(D-2)}{r}_{+}^{2}\right).\end{array}\end{eqnarray}$
The Hawking temperature T as a function of pressure P can be determined by inputting equation (14) into (8)
$\begin{eqnarray}\begin{array}{l}T({r}_{+},P)\\ =\displaystyle \frac{1}{4\pi {r}_{+}}\left[\displaystyle \frac{(D-3){r}_{+}^{2}+(D-5)\tilde{\alpha }-\tfrac{2{e}^{D-2}}{{r}_{+}^{D-2}}({r}_{+}^{2}+2\tilde{\alpha })+\tfrac{16\pi P}{D-2}{r}_{+}^{4}}{\left({r}_{+}^{2}+2\tilde{\alpha })(1+\tfrac{{e}^{D-2}}{{r}_{+}^{D-2}}\right)}\right].\end{array}\end{eqnarray}$
The temperature expression (18) reduces to the temperature of D-dimensional Bardeen-AdS black hole [48]
$\begin{eqnarray}T({r}_{+},P)=\displaystyle \frac{1}{4\pi {r}_{+}}\left[\displaystyle \frac{(D-3){r}_{+}^{2}-\tfrac{2{e}^{D-2}}{{r}_{+}^{D-2}}{r}_{+}^{2}+\tfrac{16\pi P}{D-2}{r}_{+}^{4}}{{r}_{+}^{2}(1+\tfrac{{e}^{D-2}}{{r}_{+}^{D-2}})}\right].\end{eqnarray}$
Solving (18), we can get
$\begin{eqnarray}\begin{array}{l}P({r}_{+},T)=\displaystyle \frac{D-2}{16\pi {r}_{+}^{4}}\left[4\pi {r}_{+}T({r}_{+}^{2}+2\tilde{\alpha })\left(1+\displaystyle \frac{{e}^{D-2}}{{r}_{+}^{D-2}}\right)\right.\\ \ \ \left.-(D-3){r}_{+}^{2}-(D-5)\tilde{\alpha }+\displaystyle \frac{2{e}^{D-2}}{{r}_{+}^{D-2}}({r}_{+}^{2}+2\tilde{\alpha })\right].\end{array}\end{eqnarray}$
We reduce the state obtained for EGB-AdS black hole [52] when e = 0
$\begin{eqnarray}\begin{array}{rcl}P({r}_{+},T) & = & \displaystyle \frac{D-2}{16\pi {r}_{+}^{4}}\left[4\pi {r}_{+}T({r}_{+}^{2}+2\tilde{\alpha })\right.\\ & & \left.-(D-3){r}_{+}^{2}-(D-5)\tilde{\alpha }\right]\end{array}\end{eqnarray}$
when both e and α tend to zero, the equation of state (21) Schwarzschild–Tangherlini–AdS black holes in higher dimensions [49].
$\begin{eqnarray}P({r}_{+},T)=\displaystyle \frac{D-2}{4\pi {r}_{+}}-\displaystyle \frac{(D-3)(D-2)}{16\pi {r}_{+}^{2}}.\end{eqnarray}$
Then we can calculate the critical value by equation (21)
$\begin{eqnarray}\displaystyle \frac{\partial P}{\partial {r}_{+}}=0,\displaystyle \frac{{\partial }^{2}P}{{\partial }^{2}{r}_{+}}=0.\end{eqnarray}$
When the Bardeen parameter e = 0, the black hole reduces to D-dimensional EGB AdS black holes. When D = 5, the critical temperature Tc, the critical volume rc and critical pressure Pc of the 5-dimensional Gauss–Bonnet black hole [52] are
$\begin{eqnarray}{T}_{c}=\displaystyle \frac{1}{\pi \sqrt{24\tilde{\alpha }}}\ {v}_{c}=\displaystyle \frac{4}{3}\sqrt{6\tilde{\alpha }}\ {P}_{c}=\displaystyle \frac{1}{8\pi \tilde{\alpha }}.\end{eqnarray}$
Using the critical quantities, we can calculate $\tfrac{{P}_{c}{v}_{c}}{{T}_{c}}=\tfrac{1}{3}$.
Because the original equation (23) is too complicated to be explicitly expressed, in this work we employ the numerical method to solve it. According to the boundary conditions of the black hole, we take different Bardeen parameter e (e under the critical value of eE) in different dimensions, respectively. The example numerical results are shown in table 1. From the numerical results, we can obtain the relationship between the critical volume, the critical radius and the critical pressure. In the table, we can find that the ratio ($\tfrac{{P}_{c}{v}_{c}}{{T}_{c}}$) of this black hole system is smaller but very close to the ratio relation of VdW system in the 5-dimensions. To further investigate this relationship, we calculated the pressure function of volume and temperature.
Table 1. The critical thermodynamic quantity for different dimensions with fixed the Bardeen parameter e and the Gauss–Bonnet parameter α.
α = 0.1 α = 0.2
Dimensions e rc Tc Pc rc Tc Pc
D = 5 0.4 1.552 62 0.122 67 0.021 74 0.3 1.726 83 0.098 68 0.014 88
0.3 1.362 14 0.132 42 0.026 08 0.2 1.612 69 0.101 36 0.016 53
D = 6 0.4 1.593 99 0.139 94 0.028 78 0.3 1.820 07 0.102 15 0.016 15
0.3 1.424 47 0.142 87 0.030 92 0.2 1.685 00 0.102 59 0.016 46
D = 7 0.4 0.997 62 0.160 08 0.057 61 0.3 0.649 34 0.161 21 0.417 76
0.3 0.683 09 0.181 73 0.170 00 0.2 0.421 98 0.224 74 2.510 64
D = 8 0.4 0.777 04 0.217 59 0.365 39 0.3 0.559 88 0.257 50 2.726 02
0.3 0.568 60 0.270 31 1.256 49 0.2 0.370 12 0.375 54 14.544 6
According to the first law of thermodynamics equations (12) and (15), and taking r+ > >e, it is easily to obtain
$\begin{eqnarray}V={\left(\displaystyle \frac{\partial M}{\partial P}\right)}_{e,s}=\displaystyle \frac{{\omega }_{D-2}{r}_{+}^{D-1}}{(D-1)}.\end{eqnarray}$
Since we plan to compare the equation (21) with VdW equation, so we make the VdW equation expand with the inverse of specific volume v as
$\begin{eqnarray}\begin{array}{l}P=\displaystyle \frac{T}{v-b}-\displaystyle \frac{a}{{v}^{2}}\approx \displaystyle \frac{T}{v}+\displaystyle \frac{{bT}}{{v}^{2}}+\displaystyle \frac{{b}^{2}T}{{v}^{3}}\\ \ \ \ +\ \displaystyle \frac{{b}^{3}T}{{v}^{4}}-\displaystyle \frac{a}{{v}^{2}}+o({v}^{-5}).\end{array}\end{eqnarray}$
At the same time, we expand the equation (21) as the similar form
$\begin{eqnarray}\begin{array}{l}P({r}_{+},T)=\displaystyle \frac{{{Te}}^{D-2}{r}_{+}^{1-D}(D-2)}{4}+\displaystyle \frac{{{Te}}^{D-2}(D-2)}{2{r}_{+}^{D+1}}\\ \ \ \,\,+\ \displaystyle \frac{T(D-2)}{4{r}_{+}}+\displaystyle \frac{T\tilde{\alpha }(D-2)}{2{r}_{+}^{3}}\\ \,\,-\,\displaystyle \frac{D-2}{16{e}^{2}\pi {r}_{+}^{4+D}}\left(\tilde{\alpha }\left(D-5){e}^{2}{r}_{+}^{D}-4{e}^{D}{r}_{+}^{2}\right)\right.\\ \ \ \,\,\left.+\,\ {r}_{+}^{2}\left({e}^{2}{r}_{+}^{D}(D-3)-2{e}^{D}{r}_{+}^{2}\right)\right).\end{array}\end{eqnarray}$
Thus we can define the specific volume [49, 52, 53] as
$\begin{eqnarray}v=\displaystyle \frac{4{{\ell }}^{D-2}}{D-2}{r}_{+}\end{eqnarray}$
taking as a unit, so equation (27) can read
$\begin{eqnarray}\begin{array}{rcl}P(v,T) & = & \displaystyle \frac{16}{\pi {\left(D-2\right)}^{3}{v}^{4}}\left[(D-2)T\pi v\right.\\ & & \times \left(\displaystyle \frac{{\left(D-2\right)}^{2}{v}^{2}}{16}+2\tilde{\alpha }\right)\left(1+\displaystyle \frac{{\left(4e\right)}^{D-2}}{{\left(D-2\right)}^{D-2}{v}^{D-2}}\right)\\ & & -(D-3)\displaystyle \frac{{\left(D-2\right)}^{2}{v}^{2}}{16}-(D-5)\tilde{\alpha }\\ & & \left.+\displaystyle \frac{2{\left(4e\right)}^{D-2}}{{\left(D-2\right)}^{D-2}{v}^{D-2}}\left(\displaystyle \frac{{\left(D-2\right)}^{2}{v}^{2}}{16}+4\tilde{\alpha }\right)\right]\end{array}\end{eqnarray}$
the equation (29) reduces to the state equation of the Schwarzschild–Tangherlini–AdS black holes in higher dimensions [49].
To investigate the thermodynamical critical properties of the Bardeen EGB-AdS black hole system which describes with the equation (29), we have simulated the state equation in figures 1 and 2 for different values of the Gauss–Bonnet parameter α. From the Pv diagram, we can intuitively see, when the parameter α changes from 0.1 to 0.2, the value of critical temperature decreases and the Bardeen EGB-AdS black hole conforms to the VdW system. But we should notice that $\tfrac{{P}_{c}{v}_{c}}{{T}_{c}}=0.369$ of the Bardeen EGB-AdS black hole system is between $\tfrac{{P}_{c}{v}_{c}}{{T}_{c}}=1/3=0.3333$ of the Gauss–Bonnet AdS black hole [52] and $\tfrac{{P}_{c}{v}_{c}}{{T}_{c}}=3/8=0.375$ of the VdW gas system in the 5-dimensions, because of Tc depends on the Bardeen parameter e and the Gauss–Bonnet parameter α.
Figure 1. The criticality Pv diagram of the Bardeen-EGB-AdS black hole: (a) the dimension D = 5 case with fixed the Gauss–Bonnet parameter α = 0.1 and the Bardeen parameter e = 0.3; (b) the dimension D = 5 case with fixed the Gauss–Bonnet parameter α = 0.2 and the Bardeen parameter e = 0.3.
Figure 2. Pv diagram of thermodynamic cycles for the heat engine: (a) the rectangle cycle. Paths $1\to 2$ and $3\to 4$ are isobar. Paths $2\to 3$ and $4\to 1$ are isochoric. (b) The Carnot cycle. Paths $1\to 2$ and $3\to 4$ are isothermal. Paths $2\to 3$ and $4\to 1$ are adiabatic.

4. Heat engine

In order to study the heat efficiency in the Bardeen EGB-AdS black hole space–time, we will follow a kind of the new heat engine that was constructed in [54]. We consider a rectangle cycle consisting of two isochores and two isobars in the Pv plane (see figure 2(a)). Subscripts 1, 2, 3, 4 of the physical quantities denote the four corresponding corners in the heat engine cycle in figure 2. From the equations (25) and (8), it is easy to obtain the entropy equation (9) as the function of the volume (defining by equation (25)). We can conclude that specific heat at constant volume CV equals to zero. The isobar paths coincide with the adiabatic paths, which means no heat flows along the isobar.
To facilitate the calculation, we will take $D=5,{\omega }_{3}\,=2{\pi }^{2}$, and the work of done along the heat cycle is
$\begin{eqnarray}\begin{array}{rcl}W & = & \oint {P}{\rm{d}}{V}=({P}_{1}-{P}_{4})({v}_{2}-{v}_{1})\\ & = & \displaystyle \frac{{\pi }^{2}}{2}({P}_{1}-{P}_{4})\left({r}_{2}^{4}-{r}_{1}^{4}\right).\end{array}\end{eqnarray}$
Then, the magnitude of the input heat is described as
$\begin{eqnarray}\begin{array}{rcl}{Q}_{H} & = & {\displaystyle \int }_{{T}_{1}}^{{T}_{2}}{C}_{P}({P}_{1},T){\rm{d}}{T}={\displaystyle \int }_{{S}_{1}}^{{S}_{2}}P({P}_{1},T)\left(\displaystyle \frac{\partial T}{\partial S}\right){\rm{d}}{S}\\ & = & {\displaystyle \int }_{{S}_{1}}^{{S}_{2}}{T}{\rm{d}}{S}={\displaystyle \int }_{{H}_{1}}^{{H}_{2}}={M}_{2}-{M}_{1}.\end{array}\end{eqnarray}$
Combining with equation (15), QH can be obtained as
$\begin{eqnarray}{Q}_{H}=\displaystyle \frac{3\pi {r}_{+}^{2}}{8}{\left[\left(1+\displaystyle \frac{2\alpha }{{r}_{+}^{2}}+\displaystyle \frac{4\pi {{\Pr }}_{+}^{2}}{3}\right)\left.{\left(1+\displaystyle \frac{{e}^{3}}{{r}_{+}^{3}}\right)}^{\tfrac{4}{3}}\right]\right|}_{{r}_{1}}^{{r}_{2}}.\end{eqnarray}$
Thus, the heat engine efficiency is given by
$\begin{eqnarray}\eta =\displaystyle \frac{W}{{Q}_{H}}=\displaystyle \frac{4\pi }{3}\displaystyle \frac{({P}_{1}-{P}_{4})({r}_{2}^{4}-{r}_{1}^{4})}{{r}_{+}^{2}{\left[\left(1+\tfrac{2\alpha }{{r}_{+}^{2}}+\tfrac{4\pi {{\Pr }}_{+}^{2}}{3}\right)\left.{\left(1+\tfrac{{e}^{3}}{{r}_{+}^{3}}\right)}^{\tfrac{4}{3}}\right]\right|}_{{r}_{1}}^{{r}_{2}}}\end{eqnarray}$
and in the large-horizon regime ${r}_{+}\gt \gt e$ where the correction of e for the entropy be ignored, then the entropy turns to
$\begin{eqnarray}S=\displaystyle \frac{{\pi }^{2}{r}_{+}}{2}(12\alpha +{r}_{+}^{2}).\end{eqnarray}$
From equations (33) and (34), we can obtain the efficiency as function of the pressure and the entropy
$\begin{eqnarray}\eta =\displaystyle \frac{W}{{Q}_{H}}=\displaystyle \frac{4\pi }{3}\displaystyle \frac{({P}_{1}-{P}_{4})\left(\tfrac{{\left[{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{4}}{{\pi }^{\tfrac{8}{3}}{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{4}{3}}}-\tfrac{{\left[{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{4}}{{\pi }^{\tfrac{8}{3}}{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{4}{3}}}\right)}{\tfrac{{\left[{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{2}}{{\pi }^{\tfrac{4}{3}}{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}}{A}_{1}{B}_{1}^{\tfrac{4}{3}}-\tfrac{{\left[{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{2}}{{\pi }^{\tfrac{4}{3}}{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}}{A}_{2}{B}_{2}^{\tfrac{4}{3}}},\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}{A}_{1} & = & 1+\displaystyle \frac{2\alpha {\pi }^{\tfrac{4}{3}}{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}}{{\left[{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{2}}\\ & & +\displaystyle \frac{4\pi P}{3}\displaystyle \frac{{\left[{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{2}}{{\pi }^{\tfrac{4}{3}}{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}}\\ {B}_{1} & = & 1+\displaystyle \frac{{e}^{3}{\pi }^{2}({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}})}{{\left[{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{3}}\\ {A}_{2} & = & 1+\displaystyle \frac{2\alpha {\pi }^{\tfrac{4}{3}}{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}}{{\left[{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{2}}\\ & & +\displaystyle \frac{4\pi P}{3}\displaystyle \frac{{\left[{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{2}}{{\pi }^{\tfrac{4}{3}}{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}}\\ {B}_{2} & = & 1+\displaystyle \frac{{e}^{3}{\pi }^{2}({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}})}{{\left[{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{3}}.\end{array}\end{eqnarray*}$
To compare the maximum possible efficiency, i.e. the well-known Carnot heat engine, with our heat engine efficiency in this paper, we consider that the highest temperature TH and the lowest temperature TC in our cycle correspond to T2 and T4, respectively. So the efficiency of this Carnot heat engine is
$\begin{eqnarray}{\eta }_{c}\,=\,1-\displaystyle \frac{{T}_{C}}{{T}_{H}}\,=\,1-\displaystyle \frac{{r}_{1}}{{r}_{2}}\displaystyle \frac{\left[2{r}_{2}^{2}-\tfrac{2{e}^{3}}{{r}_{2}^{3}}({r}_{2}^{2}+4\alpha )+\tfrac{16\pi {P}_{1}}{3}{r}_{2}^{4}\right]({r}_{1}^{2}+4\alpha )(1+\tfrac{{e}^{3}}{{r}_{1}^{3}})}{\left[2{r}_{1}^{2}-\tfrac{2{e}^{3}}{{r}_{1}^{3}}({r}_{1}^{2}+4\alpha )+\tfrac{16\pi {P}_{4}}{3}{r}_{1}^{4}\right]({r}_{2}^{2}+4\alpha )\left(1+\tfrac{{e}^{3}}{{r}_{2}^{3}}\right)}.\end{eqnarray}$
Substituting equation (34) into the above equation, we can get
$\begin{eqnarray}{\eta }_{c}=1-\displaystyle \frac{{T}_{4}({P}_{4},{S}_{1})}{{T}_{2}({P}_{1},{S}_{2})}=1-\displaystyle \frac{\left[{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]({\pi }^{\tfrac{2}{3}}{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{1}{3}})}{\left[{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]\left({\pi }^{\tfrac{2}{3}}{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{1}{3}}\right)}\displaystyle \frac{({D}_{1}-{C}_{1}){B}_{2}{E}_{1}}{({D}_{2}-{C}_{2}){B}_{1}{E}_{2}},\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}{C}_{1} & = & \displaystyle \frac{2{e}^{3}{\pi }^{2}({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}})}{{\left[{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{3}}\\ & & \times \left(\displaystyle \frac{{\left[{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{2}}{{\pi }^{\tfrac{4}{3}}{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}}+4\alpha \right)\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{C}_{2} & = & \displaystyle \frac{2{e}^{3}{\pi }^{2}({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}})}{{\left[{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{3}}\\ & & \times \left(\displaystyle \frac{{\left[{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{2}}{{\pi }^{\tfrac{4}{3}}{\left({S}_{1}+\sqrt{{S}_{2}^{1}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}}+4\alpha \right)\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{D}_{1} & = & 2\displaystyle \frac{{\left[{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{2}}{{\pi }^{\tfrac{4}{3}}{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}}\\ & & +\displaystyle \frac{16\pi {P}_{1}}{3}\displaystyle \frac{{\left[{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{4}}{{\pi }^{\tfrac{8}{3}}{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{4}{3}}}\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{D}_{2} & = & 2\displaystyle \frac{{\left[{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{2}}{{\pi }^{\tfrac{4}{3}}{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}}\\ & & +\displaystyle \frac{16\pi {P}_{4}}{3}\displaystyle \frac{{\left[{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{4}}{{\pi }^{\tfrac{8}{3}}{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{4}{3}}}\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{E}_{1} & = & \displaystyle \frac{{\left[{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{2}}{{\pi }^{\tfrac{4}{3}}{\left({S}_{1}+\sqrt{{S}_{1}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}}+4\alpha \\ {E}_{2} & = & \displaystyle \frac{{\left[{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}-4{\pi }^{\tfrac{4}{3}}\alpha \right]}^{2}}{{\pi }^{\tfrac{4}{3}}{\left({S}_{2}+\sqrt{{S}_{2}^{2}+64{\pi }^{4}{\alpha }^{3}}\right)}^{\tfrac{2}{3}}}+4\alpha .\end{array}\end{eqnarray*}$
Because the analytical expresses of the heat engine efficiency η (see equation (35)) and the ratio η/ηc (see equations (35) and (37)) are so complicated, we numerically simulate them in figures 3 and 4, respectively. Figure 3 exhibits the efficiency for the Bardeen EGB-AdS black hole versus entropy S2, and the figure 4 exhibits the ratio between the efficiency and the Carnot efficiency versus entropy S2. Figure 3(a) shows the case with efficiency η versus entropy S2 for different values of the Bardeen parameter e with fixed Gauss–Bonnet parameter α and pressure P1, P4. From the figure 3(a), we can find that, for all values of Bardeen parameter e, the efficiency monotonically increases as the entropy S2 (corresponding to volume v2) grows and then tends to the saturation value. This means that the increase of volume difference between the small black hole (v1) and lager black hole (v2) will make the heat engine efficiency increase. And when the Bardeen parameter e becomes higher, the heat engine efficiency of the Bardeen EGB-AdS black hole will get lower. The figure 3(b) displays the case of the efficiency η versus entropy S2 with different values of the Gauss–Bonnet parameter α with fixed Bardeen parameter e and pressure P1, 4P4. And for all values of Gauss Bonnet parameter α, the curves grow similar as shown in the figure 3(a), but the different between figure 3(b) and (a) is as the Gauss Bonnet parameter α increases the efficiency of black hole will increase.
Figure 3. The efficiency of the heat engine versus the entropy for Bardeen EGB-AdS black hole. (a) The case for different Bardeen parameter e = 0.1, 0.3, 0.4 (from top to bottom) with the Gauss–Bonnet parameter α = 0.1, the pressure P1 = 4, P4 = 1 and the entropy S1 = 1. (b) The case for different Gauss–Bonnet parameter α = 0.2, 0.15, 0.1 (from top to bottom) with the Bardeen parameter e = 0.3, the pressure P1 = 4, P4 = 1 and the entropy S1 = 1.
Figure 4. Ratio η/ηc between the rectangle cycle efficiency and the Carnot cycle efficiency versus entropy for the Bardeen-EGB-AdS black hole. (a) The case for different e = 0.1, 0.3, 0.4 (from top to bottom) with the Gauss–Bonnet parameter α = 0.1, the pressure P1 = 4, P4 = 1 and the entropy S1 = 1. (b) The case for different α = 0.1, 0.15, 0.2 (from top to bottom) with the Bardeen parameter e = 0.3, the pressure P1 = 4, P4 = 1 and the entropy S1 = 1.
Figure 4 shows the ratio η/ηc against entropy S2 in different values of Bardeen parameter e with fixed Gauss Bonnet parameter α and Gauss–Bonnet α with fixed Bardeen parameter e, respectively. And from figures 4(a) and (b), we can see that the all curves monotonic grow rapidly firstly, then the efficiency reaches the saturation values after the certain value of entropy S2. For different Bardeen parameter e and Gauss–Bonnet parameter α, the rates of increment are different. Because the efficiency ratio η/ηc versus entropy S2 is bounded below 1, it coincides with the thermodynamical second law. In figure 4, the efficiency ratio η/ηc will both get lower when the Bardeen parameter e and the Gauss–Bonnet parameter α get higher.

5. Conclusion

In this paper, we have discussed the Pv criticality and the heat engine efficiency in the Bardeen EGB AdS black hole space–time. We have considered the cosmological constant as the thermodynamic pressure and thermodynamic volume as its conjugate quality to set up the extended phase space. We have studied the critical Pv plane and found that the Bardeen EGB-AdS black hole conform to VdW liquid–gas system in the extended phase space and the critical temperature decreases with the Gauss–Bonnet parameter α. Furthermore, we have noticed that $\tfrac{{P}_{c}{v}_{c}}{{T}_{c}}=0.369$ of the Bardeen EGB-AdS black hole system is between $\tfrac{{P}_{c}{v}_{c}}{{T}_{c}}=1/3=0.3333$ of the Gauss–Bonnet AdS black hole and $\tfrac{{P}_{c}{v}_{c}}{{T}_{c}}=3/8=0.375$ of the VdW gas system in the 5-dimensions.
Then we have constructed a heat engine by taking the Bardeen EGB-AdS black hole as a working substance, and we consider a rectangle heat cycle in the Pv plot. We have found that two cases, with different Bardeen parameter e and different Gauss– Bonnet parameter α both, have the same situation, i.e. as the entropy difference between small black hole S1 and larger black hole S2 increases, the heat engine efficiency will increase. Furthermore, as the Bardeen parameter e increases, the efficiency will decrease. However, for the the Gauss–Bonnet parameter α, the results are contrary. Then we have compared our efficiency results with the well-know Carnot heat engine efficiency, we have found the efficiency ratio η/ηc versus entropy S2 is bounded below 1, so it coincides with the thermodynamical second law.

This work is supported by the National Science Foundation of China under Grant Nos. U1731107.

1
Bardeen J M Carter B Hawking S W 1973 Commun. Math. Phys. 31 161 170

DOI

2
Bekenstein J 1972 Lett. Nuovo Cimento 4 5

DOI

3
Bekenstein J D 1973 Phys. Rev. D 7 2333

DOI

4
Bekenstein J D 1974 Phys. Rev. D 9 3292

DOI

5
Hawking S W 1975 Commun. Math. Phys. 43 199

DOI

6
Jacobson T 1995 Phys. Rev. Lett. 75 1260 1263

DOI

7
Witten E 1998 Adv. Theor. Math. Phys. 2 253 291

DOI

8
Witten E 1998 Adv. Theor. Math. Phys. 2 505 532

DOI

9
Kubiznak D Mann R B 2015 Can. J. Phys. 93 999 1002

DOI

10
Wald R M 2001 Living Rev. Relativ. 4 6

DOI

11
Papadimitriou I Skenderis K 2005 J. High Energy Phys. JHEP08(2005)004

DOI

12
Hawking S W Page D N 1983 Commun. Math. Phys. 87 577

DOI

13
Chamblin A Emparan R Johnson C V Myers R C 1999 Phys. Rev. D 60 064018

DOI

14
Chamblin A Emparan R Johnson C V Myers R C 1999 Phys. Rev. D 60 104026

DOI

15
Kastor D Ray S Traschen J 2009 Class. Quantum Grav. 26 195011

DOI

16
Henneaux M 1984 Phys. Lett. B 143 415 420

DOI

17
Teitelboim C 1985 Phys. Lett. B 158 293 297

DOI

18
Henneaux M 1989 Phys. Lett. B 222 195 199

DOI

19
Belhaj A Chabab M Moumni H E Sedra M B 2012 Chin. Phys. Lett. 29 100401

DOI

20
Altamirano N Kubizfnáak D Mann R B 2013 Phys. Rev. D 88 101502

DOI

21
Zhao R Zhao H H Ma M S Zhang L C 2013 Eur. Phys. J. C 73 2645

DOI

22
Hendi S H Vahidinia M H 2013 Phys. Rev. D 88 084045

DOI

23
Chen S B Liu X F Liu C Q 2013 Chin. Phys. Lett. 30 060401

DOI

24
Johnson C V 2014 Class. Quantum Grav. 31 205002

DOI

25
Chakraborty A Johnson C V 2018 Int. J. Mod. Phys. D 27 1950012

DOI

26
Johnson C 2016 Entropy 18 120

DOI

27
Johnson C V 2016 Class. Quantum Grav. 33 135001

DOI

28
Mo J X Liang F Li G Q 2017 J. High Energy Phys. JHEP03(2017)010

DOI

29
Hennigar R A McCarthy F Ballon A Mann R B 2017 Class. Quantum Grav. 34 175005

DOI

30
Zhang J L Li Y J Yu H W 2019 J. High Energy Phys. JHEP02(2019)144

DOI

31
Penrose R 1965 Phys. Rev. Lett. 14 57

DOI

Hawking S W 1967 Proc. R. Soc. A 300 187

DOI

Hawking S W Penrose R 1970 Proc. R. Soc. A 314 529

DOI

32
Bardeen J M 1968 Proc. GR5 Tiflis, Georgia, U.S.S.R. 174

33
Gan Q S Chen J H Wang Y J 2016 Chin. Phys. B 25 120401

DOI

34
Akbar M Salem N Hussein S A 2012 Chin. Phys. Lett. 29 070401

DOI

35
Ahmed Rizwan C L Naveena Kumara A Rajani K V Deepak V Ajith K M 2019 Gen. Relativ. Gravit. 51 161

DOI

36
Rajani K V Ahmed Rizwan C L Naveena Kumara A Deepak V Ajith K M 2019 (arXiv:1904.06914v1)

37
Nam Cao H 2019 Gen. Relativ. Gravit. 51 100

DOI

38
Seungjoon H Nam Cao H 2019 Eur. Phys. J. C 79 737

DOI

39
Lanczos C 1938 Ann. Math. 39 842

DOI

40
Lovelock D 1971 J. Math. Phys. 12 498

DOI

41
Boulware D G Deser S 1985 Phys. Rev. Lett. 55 2656

DOI

42
Kumar A Singh D V Ghosh S G 2019 Eur. Phys. J. C 79 275

DOI

43
Dehghani M H Hendi S H 2007 Int. J. Mod. Phys. D 16 1829

DOI

44
Gross D J Sloan J H 1987 Nucl. Phys. B 291 41

DOI

45
Bento M C Bertolami O 1996 Phys. Lett. B 368 198

DOI

46
Ghosh S G Papnoi U Maharaj S D 2014 Phys. Rev. D 90 044068

DOI

47
Bardeen J M Carter B Hawking S W 1973 Commun. Math. Phys. 31 161 170

DOI

48
Md S A Ghosh S G 2018 Phys. Rev. D 98 084025

DOI

49
Gunasekaran S Mann R B Kubiznak D 2012 J. High Energy Phys. JHEP11(2012)110

DOI

50
Cai R G 2002 Phys. Rev. D 65 084014

DOI

51
Cho Y M Neupane I P 2002 Phys. Rev. D 66 024044

DOI

Neupane I P 2004 Phys. Rev. D 69 084011

DOI

52
Cai R G Cao L M Li L Yang R Q 2013 J. High Energy Phys. JHEP09(2013)005

DOI

53
Kubiznak D Mann R B 2012 J. High Energy Phys. JHEP07(2012)033

DOI

54
Johnson C V 2014 Class. Quantum Grav. 31 205002

DOI

Outlines

/