Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Novel interaction phenomena of the (3+1)-dimensional Jimbo–Miwa equation*

  • Xiaomin Wang ,
  • Sudao Bilige , 1
Expand
  • Department of Mathematics, Inner Mongolia University of Technology, Hohhote, 010051, China

1Author to whom any correspondence should be addressed.

Received date: 2019-10-13

  Revised date: 2020-01-07

  Accepted date: 2020-01-07

  Online published: 2020-04-08

Supported by

National Natural Science Foundation of China(11661060)

Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-20-A06)

Natural Science Foundation of Inner Mongolia Autonomous Region of China(2018LH01013)

Copyright

© 2020 Chinese Physical Society and IOP Publishing Ltd

Abstract

In this paper, we give the general interaction solution to the (3+1)-dimensional Jimbo–Miwa equation. The general interaction solution contains the classical interaction solution. As an example, by using the generalized bilinear method and symbolic computation by using Maple software, novel interaction solutions under certain constraints of the (3+1)-dimensional Jimbo–Miwa equation are obtained. Via three-dimensional plots, contour plots and density plots with the help of Maple, the physical characteristics and structures of these waves are described very well. These solutions greatly enrich the exact solutions to the (3+1)-dimensional Jimbo–Miwa equation found in the existing literature.

Cite this article

Xiaomin Wang , Sudao Bilige . Novel interaction phenomena of the (3+1)-dimensional Jimbo–Miwa equation*[J]. Communications in Theoretical Physics, 2020 , 72(4) : 045001 . DOI: 10.1088/1572-9494/ab690c

1. Introduction

In recent years, nonlinear partial differential equations have been widely applied to many natural systems, for instance, in biology, chaos theory and ecology. Moreover, the exact analytical solutions to nonlinear partial differential equations play a key role in several research directions, for example, descriptions of different kinds of waves as an initial condition for simulation processes. Thus, a great deal of attention is paid to this important research area. The various exact solutions to nonlinear evolution equations (NLEEs) can be obtained via some effective methods, such as solitons [16], rogue waves [7, 8], breathers [9], periodic waves [1013], optical solutions [14], lump solutions [15], etc. Recently, based on the Hirota bilinear method, Ma and Zhou introduced a new way to get the lump solutions to NLEEs by using symbolic computation and provided theoretical proof [16, 17]. By using this method, researchers have successfully obtained the lump solutions, lump-type solution and interaction solutions of NLEEs [1850].
In the present paper, we will give the general interaction solution to the (3+1)-dimensional Jimbo–Miwa equation. The general interaction contains the classical interaction solution, such as the lump–kink solution and the lump–soliton solution. The rest of the paper is organized as follows. In section 2, we will give the bilinear form and general interaction solution to the (3+1)-dimensional Jimbo–Miwa equation. In section 3, by using symbolic computation Maple, we will obtain the novel interaction solutions between the high-order lump-type solution and other functions. In section 4, via three-dimensional plots, contour plots and density plots with the help of Maple, the physical characteristics and structures of these waves are described very well. In section 5, a few of the conclusions and outlook will be given.

2. General interaction solutions to the (3+1)-dimensional Jimbo–Miwa equation

We consider the (3+1)-dimensional Jimbo–Miwa equation [51]
$\begin{eqnarray}{u}_{{xxxy}}+3{u}_{y}{u}_{{xx}}+3{u}_{x}{u}_{{xy}}+2{u}_{{yt}}-3{u}_{{xz}}=0.\end{eqnarray}$
Equation (1) is the second equation in the well-known Kadomtsev–Petviashvili hierarchy of integrable systems [51, 52], which is used to describe certain interesting (3+1)-dimensional waves in physics. Although Equation (1) is non-integrable, the exact solutions to the Jimbo–Miwa equation have been investigated by using various methods [53, 54]. Recently, researchers studied the solitary wave solutions to Equation (1) in [36]. Based on the bilinear method, we obtained several interaction solutions and the periodic lump wave solutions for Equation (1) [12, 13]. The classes of lump solutions, lump-type solutions, general lump-type solutions and interaction solutions for Equation (1) were presented in [2430].

2.1. Bilinear form

Under the Cole–Hopf transformation:
$\begin{eqnarray}u(x,y,z,t)=2{\left[\mathrm{ln}f(x,y,z,t)\right]}_{x},\end{eqnarray}$
Equation (1) becomes the generalized bilinear equation
$\begin{eqnarray}{{\rm{G}}{\rm{B}}}_{JM}(f):=({D}_{p,x}^{3}{D}_{p,y}+2{D}_{p,y}{D}_{p,t}-3{D}_{p,x}{D}_{p,z})f\cdot f\,=\,0,\end{eqnarray}$
where p is an arbitrarily natural number, often a prime number. D is a generalized bilinear differential operator as follows [55],
$\begin{eqnarray}\begin{array}{rcl}{D}_{p,{x}_{1}}^{m}{D}_{p,{x}_{2}}^{n}f\cdot f & = & {\left({\partial }_{{x}_{1}}+{\alpha }_{p}{\partial }_{{x}_{1}^{\prime} }\right)}^{m}{\left({\partial }_{{x}_{2}}+{\alpha }_{p}{\partial }_{{x}_{2}^{\prime} }\right)}^{n}f({x}_{1},{x}_{2})\\ & & \times \,f({x}_{1}^{\prime} ,{x}_{2}^{\prime} ){| }_{{x}_{1}^{\prime} ={x}_{1},{x}_{2}^{\prime} ={x}_{2}}\\ & = & \sum _{i=0}^{m}\sum _{j=0}^{n}\left(\displaystyle \genfrac{}{}{0em}{}{m}{i}\right)\left(\displaystyle \genfrac{}{}{0em}{}{n}{j}\right){\alpha }_{p}^{i}{\alpha }_{p}^{j}\\ & & \times \displaystyle \frac{{\partial }^{m+n-i-j}f({x}_{1},{x}_{2})}{\partial {x}_{1}^{m-i}\partial {x}_{2}^{n-j}}\displaystyle \frac{\partial {x}^{i+j}f({x}_{1},{x}_{2})}{\partial {x}_{1}^{i}\partial {x}_{2}^{j}},\end{array}\end{eqnarray}$
where $m,n\geqslant 0,{\alpha }_{p}^{s}={\left(-1\right)}^{{r}_{p}(s)}$, if $s\equiv {r}_{p}(s)$ mod p.
When taking p = 3, we can obtain the generalized bilinear Jimbo–Miwa equation
$\begin{eqnarray}\begin{array}{rcl}{\mathrm{GB}}_{{JM}}(f) & := & ({D}_{3,x}^{3}{D}_{3,y}+2{D}_{3,y}{D}_{3,t}-3{D}_{3,x}{D}_{3,z})f\cdot f\\ & = & 2[3{f}_{{xx}}{f}_{{xy}}+2({f}_{{yt}}f-{f}_{y}{f}_{t})\\ & & +3({f}_{x}{f}_{z}-{f}_{{xz}}f)]=0.\end{array}\end{eqnarray}$
By using transformation (2), Equation (5) is transformed into the following form
$\begin{eqnarray}\begin{array}{rcl}{\mathrm{GP}}_{{JM}}(u) & := & \displaystyle \frac{9}{8}{u}^{2}{u}_{x}v+\displaystyle \frac{3}{8}{u}^{3}{u}_{y}+\displaystyle \frac{3}{4}{{uvu}}_{{xx}}+\displaystyle \frac{3}{4}{u}_{x}^{2}v\\ & & +\displaystyle \frac{3}{4}{u}^{2}{u}_{{xy}}+\displaystyle \frac{9}{4}{{uu}}_{x}{u}_{y}\\ & & +\displaystyle \frac{3}{2}{u}_{{xx}}{u}_{y}+\displaystyle \frac{3}{2}{u}_{x}{u}_{{xy}}+2{u}_{{yt}}-3{u}_{{xz}}=0,\end{array}\end{eqnarray}$
where uy = vx. Transformation (2) is also a characteristic one in establishing Bell polynomial theories of soliton equations [56], and an accurate relation is
$\begin{eqnarray}{\mathrm{GP}}_{{JM}}(u)={\left[\displaystyle \frac{{\mathrm{GB}}_{{JM}}(f)}{{f}^{2}}\right]}_{x}.\end{eqnarray}$
Hence, if f solves generalized bilinear Jimbo–Miwa Equation (5), Jimbo–Miwa Equation (6) will be solved.

2.2. General interaction solution

In order to obtain the general interaction solution, we take its main steps as follows:
Step 1. By using the transformation (2), Equation (1) is transformed into generalized bilinear equation (5).
Step 2. To search for general interaction solutions of Equation (1), we suppose that generalized bilinear Jimbo–Miwa equation (5) has the following solution:
$\begin{eqnarray}f={a}_{0}+\sum _{i\,=\,1}^{N}{\xi }_{i}^{2{n}_{i}}+\sum _{j\,=\,1}^{M}{m}_{j}{g}_{j}({\eta }_{j}),\end{eqnarray}$
where
$\begin{eqnarray}{\xi }_{i}={a}_{i0}+\sum _{k\,=\,1}^{4}{a}_{{ik}}{x}_{k},{\eta }_{j}={b}_{j0}+\sum _{k\,=\,1}^{4}{b}_{{jk}}{x}_{k},\end{eqnarray}$
where ${a}_{0},\,{a}_{{ik}},\,{b}_{{jk}},\,{m}_{j}\ (i\,=\,1,\cdots ,\,N;j\,=\,1,\cdots ,\,M;k=0\,,1,\cdots ,\,4)$ are arbitrary real constants, and x1 = x, x2 = y, x3 = z, x4 = t.
Step 3. By substituting (8), (9) into Equation (5) and collecting all terms with the same order of ${x}_{i},{g}_{j}({\eta }_{j}),{g}_{j}^{{\prime} }({\eta }_{j}),{g}_{j}^{{\prime\prime} }({\eta }_{j}),\ldots $ together, the left-hand side of Equation (3) is converted into another polynomial in ${x}_{i},{g}_{j}({\eta }_{j}),{g}_{j}^{{\prime} }({\eta }_{j}),{g}_{j}^{{\prime\prime} }({\eta }_{j}),\ldots $. Equating each coefficient of these different power terms to zero yields a set of nonlinear algebraic equations for a0, aij, bjk, mj. With the aid of Maple, we solve above nonlinear algebraic equations.
Step 4. By substituting ${a}_{0},{a}_{{ij}},{b}_{{jk}},{m}_{j}$ into (8) and using bilinear transformation (2), we can obtain the general interaction solution (8) of Equation (1).

When choosing ni = 1, N = 2, M = 1 and gj(ηj) = eηj or gj(ηj) = $\cosh $(ηj), the general interaction solution (8) is reduced to the classical interaction solution, such as the lump–kink solution and the lump–soliton solution [2629, 31, 36, 37, 4548].

When choosing ni = 1, N = 2, M = 1 and ${g}_{j}({\eta }_{j})=\cos {\eta }_{j}$ or ${g}_{j}({\eta }_{j})={c}_{1}{{\rm{e}}}^{{\eta }_{j}}+{c}_{2}{{\rm{e}}}^{-{\eta }_{j}}$ or ${g}_{j}({\eta }_{j})=\sinh ({\eta }_{j})$ or ${g}_{j}({\eta }_{j})=\sin ({\eta }_{j})$, we obtain the interaction solutions of [31, 32, 36, 50] respectively.

When mj = 0, the general interaction solution (8) is reduced to the general lump-type solution which contains the lump solution, the general lump solution, high-order lump solutions, the lump-type solution, etc [1850].

In step 3, the connection between gj(ηj) and ${g}_{j}^{{\prime} }({\eta }_{j}),{g}_{j}^{{\prime\prime} }({\eta }_{j}),\ldots $ must be considered when we get each coefficient of different power terms to ${g}_{j}({\eta }_{j}),{g}_{j}^{{\prime} }({\eta }_{j}),{g}_{j}^{{\prime\prime} }({\eta }_{j}),\ldots $.

3. Novel interaction solutions

In the section, we will search for novel interaction solutions between the high-order lump-type solution and other functions of the (3+1)-dimensional Jimbo–Miwa equation.
In order to obtain the interaction solution between the high-order lump-type solution and the double-exponential function, the trigonometric function and the hyperbolic function of the (3+1)-dimensional Jimbo–Miwa equation (1), we suppose
$\begin{eqnarray}N=3,{n}_{1}=2,{n}_{2}=1,{n}_{3}=1,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}M & = & 4,{g}_{1}({\eta }_{1})={{\rm{e}}}^{{\eta }_{1}},{g}_{2}({\eta }_{2})={{\rm{e}}}^{-{\eta }_{2}},\\ {g}_{3}({\eta }_{3}) & = & \cos {\eta }_{3},{g}_{4}({\eta }_{4})=\cosh {\eta }_{4}.\end{array}\end{eqnarray}$
The interaction solution to the generalized bilinear equation (5) is written in the following form
$\begin{eqnarray}\begin{array}{rcl}f & = & {a}_{0}+{\xi }_{1}^{4}+{\xi }_{2}^{2}+{\xi }_{3}^{2}+{m}_{1}{{\rm{e}}}^{{\eta }_{1}}+{m}_{2}{{\rm{e}}}^{-{\eta }_{2}}\\ & & +{m}_{3}\cos {\eta }_{3}+{m}_{4}\cosh {\eta }_{4},\end{array}\end{eqnarray}$
where ${\xi }_{i}={a}_{i0}+{a}_{i1}x+{a}_{i2}y+{a}_{i3}z+{a}_{i4}t$ (i = 1, 2, 3), ${\eta }_{j}={b}_{j0}+{b}_{j1}x$ + ${b}_{j2}y+{b}_{j3}z$ + ${b}_{j4}t$ (j = 1, 2, 3, 4).
By substituting (12) into Equation (5), collecting all terms with the same order of $x,y,z,t,{{\rm{e}}}^{{\eta }_{1}},{{\rm{e}}}^{-{\eta }_{2}},\cos {\eta }_{3},\sin {\eta }_{3},\cosh {\eta }_{4},$ $\sinh {\eta }_{4}$ together, the left-hand side of Equation (5) is converted into another polynomial in $x,y,z,t,{{\rm{e}}}^{{\eta }_{1}},{{\rm{e}}}^{-{\eta }_{2}},\cos {\eta }_{3},\sin {\eta }_{3},$ $\cosh {\eta }_{4},\sinh {\eta }_{4}$. Equating each coefficient of these different power terms to zero yields a set of nonlinear algebraic equations for a0, aij, bjk, mj.
Solving the algebraic equations by using Maple yields the following sets of solutions.
I. Between lumps and three-wave solutions:
When ${m}_{2}={m}_{3}={m}_{4}={m}_{1}\ne 0,{\eta }_{2}={\eta }_{3}={\eta }_{1}$ in (12), solution (12) represents the interaction solutions between the high-order lump-type solution and three-wave solutions $f\,={a}_{0}\,+\,{\xi }_{1}^{4}\,+\,{\xi }_{2}^{2}\,+\,{\xi }_{3}^{2}\,+\,{m}_{1}{{\rm{e}}}^{{\eta }_{1}}\,+\,{m}_{1}{{\rm{e}}}^{-{\eta }_{1}}\,+\,{m}_{1}\cos {\eta }_{1}\,+\,{m}_{1}\cosh {\eta }_{4}$.
$\begin{eqnarray}\begin{array}{r}\begin{array}{rcl}{\rm{C}}{\rm{a}}{\rm{s}}{\rm{e}}\,1.1:{a}_{11} & = & 0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{21}},{a}_{14}=0,\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{31}=0,\\ {a}_{33} & = & \displaystyle \frac{2{a}_{24}{a}_{32}}{3{a}_{21}},{a}_{34}=0,{b}_{12}=0,\\ {b}_{13} & = & 0,{b}_{14}=\displaystyle \frac{{a}_{24}{b}_{11}}{{a}_{21}},{b}_{42}=0,\\ {b}_{43} & = & 0,{b}_{44}=\displaystyle \frac{{a}_{24}{b}_{41}}{{a}_{21}}.\,({a}_{21}\ne 0)\end{array}\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{Case}}\ 1.2:{a}_{11} & = & 0,{a}_{14}=0,{a}_{21}=\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{13}},\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{31}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{12}=0,\\ {b}_{13} & = & 0,{b}_{14}=\displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}},{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{3{a}_{13}{b}_{41}}{2{a}_{12}}\ .\ ({a}_{12}{a}_{13}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{Case}}\ 1.3:{a}_{11} & = & 0,{a}_{14}=0,{a}_{21}=-\displaystyle \frac{2{a}_{12}{a}_{32}{a}_{34}}{3{a}_{13}{a}_{22}},\\ {a}_{23} & = & \displaystyle \frac{{a}_{13}{a}_{22}}{{a}_{12}},{a}_{24}=-\displaystyle \frac{{a}_{32}{a}_{34}}{{a}_{22}},\\ {a}_{31} & = & \displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{33} & = & \displaystyle \frac{{a}_{13}{a}_{32}}{{a}_{12}},{b}_{12}=0,{b}_{13}=0,\\ {b}_{14} & = & \displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}},{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{3{a}_{13}{b}_{41}}{2{a}_{12}}.\ ({a}_{12}{a}_{13}{a}_{22}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{Case}}\ 1.4:{a}_{11} & = & 0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}},{a}_{14}=0,\\ {a}_{21} & = & -\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{22}},{a}_{23}=\displaystyle \frac{2{a}_{22}{a}_{34}}{3{a}_{31}},\\ {a}_{24} & = & -\displaystyle \frac{{a}_{32}{a}_{34}}{{a}_{22}},{a}_{30}\,=\,\displaystyle \frac{{a}_{20}{a}_{32}}{{a}_{22}},\\ {a}_{33} & = & \displaystyle \frac{2{a}_{32}{a}_{34}}{3{a}_{31}},{b}_{12}=0,{b}_{13}=0,\\ {b}_{14} & = & \displaystyle \frac{{a}_{34}{b}_{11}}{{a}_{31}},{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{{a}_{34}{b}_{41}}{{a}_{31}}.\,({a}_{22}{a}_{31}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{Case}}\ 1.5:{a}_{11} & = & 0,{a}_{14}=0,{a}_{21}=0,\\ {a}_{23} & = & \displaystyle \frac{{a}_{13}{a}_{22}}{{a}_{12}},{a}_{24}=0,\\ {a}_{30} & = & \displaystyle \frac{{a}_{12}{a}_{20}{a}_{33}}{{a}_{13}{a}_{22}},{a}_{31}=0,{a}_{32}=\displaystyle \frac{{a}_{12}{a}_{33}}{{a}_{13}},{a}_{34}=0,\\ {b}_{12} & = & 0,{b}_{13}=0,{b}_{14}=\displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}},\\ {b}_{42} & = & 0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{3{a}_{13}{b}_{41}}{2{a}_{12}}.\ ({a}_{12}{a}_{13}{a}_{22}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{Case}}\ 1.6:{a}_{11} & = & 0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}},{a}_{14}=0,{a}_{21}=0,\\ {a}_{22} & = & \displaystyle \frac{3{a}_{23}{a}_{31}}{2{a}_{34}},{a}_{24}=0,\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{11}=0,\\ {b}_{13} & = & \displaystyle \frac{2{a}_{34}{b}_{12}}{3{a}_{31}},{b}_{14}=0,\\ {b}_{41} & = & 0,{b}_{43}=\displaystyle \frac{2{a}_{34}{b}_{42}}{3{a}_{31}},{b}_{44}=0.({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 1.7:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,\\ {a}_{21} & = & \displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{13}},{a}_{22}=0,\\ {a}_{23} & = & 0,{a}_{31}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{11}=\displaystyle \frac{2{a}_{12}{b}_{14}}{3{a}_{13}},\\ {b}_{12} & = & 0,{b}_{13}=0,{b}_{41}=\displaystyle \frac{2{a}_{12}{b}_{14}}{3{a}_{13}},{b}_{42}=0,\\ {b}_{43} & = & 0,{b}_{44}={b}_{14}\ .\ ({a}_{13}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 1.8:{a}_{11} & = & 0,{a}_{14}=0,{a}_{21}=0,\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{24}=0,\\ {a}_{31} & = & 0,{a}_{33}=\displaystyle \frac{{a}_{13}{a}_{32}}{{a}_{12}},{a}_{34}=0,{b}_{12}=0,\\ {b}_{13} & = & 0,{b}_{14}=\displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}},{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{3{a}_{13}{b}_{41}}{2{a}_{12}}\ .\ ({a}_{12}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 1.9:{a}_{11} & = & 0,{a}_{12}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{34}},{a}_{14}=0,{a}_{21}=0,\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{24}=0,{a}_{32}=0,\\ {a}_{33} & = & 0,{b}_{12}=0,{b}_{13}=0,\\ {b}_{14} & = & \displaystyle \frac{{a}_{34}{b}_{11}}{{a}_{31}},{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{{a}_{34}{b}_{41}}{{a}_{31}},({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$
where other parameters are arbitrary real constants.
II. Between lumps and breather solutions:
When ${\eta }_{2}={\eta }_{1},{m}_{3}={m}_{2}={m}_{1}\ne 0,{m}_{4}=0$ in (12), solution (12) represents the interaction solutions between the high-order lump-type solution and the breather solutions $f={a}_{0}+{\xi }_{1}^{4}+{\xi }_{2}^{2}+{\xi }_{3}^{2}+{m}_{1}{{\rm{e}}}^{{\eta }_{1}}+{m}_{1}{{\rm{e}}}^{-{\eta }_{1}}+{m}_{1}\cos {\eta }_{3}$.
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 2.1:{a}_{12} & = & 0,{a}_{13}=0,\\ {a}_{14} & = & \displaystyle \frac{3{a}_{11}{a}_{33}}{2{a}_{32}},{a}_{21}\,=\,\displaystyle \frac{2{a}_{24}{a}_{32}}{3{a}_{33}},\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{31}=0,{a}_{34}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{b}_{12} & = & 0,{b}_{13}=0,{b}_{14}=\displaystyle \frac{3{a}_{33}{b}_{11}}{2{a}_{32}},{b}_{32}=0,{b}_{33}=0,\\ {b}_{34} & = & \displaystyle \frac{3{a}_{33}{b}_{31}}{2{a}_{32}}.\ ({a}_{32}{a}_{33}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 2.2:{a}_{11} & = & 0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}},\\ {a}_{14} & = & 0,{a}_{21}=0,{a}_{22}=\displaystyle \frac{3{a}_{23}{a}_{31}}{2{a}_{34}},\\ {a}_{24} & = & 0,{a}_{32}=0,{a}_{33}=0,{b}_{11}=0,\\ {b}_{13} & = & \displaystyle \frac{2{a}_{34}{b}_{12}}{3{a}_{31}},\\ {b}_{14} & = & 0,{b}_{31}=0,{b}_{32}={b}_{12},\\ {b}_{33} & = & \displaystyle \frac{2{a}_{34}{b}_{12}}{3{a}_{31}},{b}_{34}=0.({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 2.3:{a}_{11} & = & 0,{a}_{14}=0,{a}_{21}\,=\,\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{13}},\\ {a}_{22} & = & 0,{a}_{23}=0,\\ {a}_{31} & = & \displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},{a}_{32}=0,{a}_{33}=0,{b}_{12}=0,\\ {b}_{13} & = & 0,{b}_{14}=\displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}},\\ {b}_{31} & = & {b}_{11},{b}_{32}=0,{b}_{33}=0,\\ {b}_{34} & = & \displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}}.\ ({a}_{12}{a}_{13}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 2.4:{a}_{11} & = & 0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{21}},\\ {a}_{14} & = & 0,{a}_{22}=0,{a}_{23}=0,{a}_{31}=0,\\ {a}_{33} & = & \displaystyle \frac{2{a}_{24}{a}_{32}}{3{a}_{21}},{a}_{34}=0,{b}_{12}=0,\\ {b}_{13} & = & 0,{b}_{14}=\displaystyle \frac{{a}_{24}{b}_{11}}{{a}_{21}},\\ {b}_{31} & = & {b}_{11},{b}_{32}=0,{b}_{33}=0,\\ {b}_{34} & = & \displaystyle \frac{{a}_{24}{b}_{11}}{{a}_{21}}\ .\ ({a}_{21}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 2.5:{a}_{11} & = & 0,{a}_{12}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{34}},{a}_{14}\,=\,0,{a}_{21}=0,\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{24}\,=\,0,{a}_{32}=0,\\ {a}_{33} & = & 0,{b}_{12}\,=\,0,{b}_{13}=0,\\ {b}_{14} & = & \displaystyle \frac{{a}_{34}{b}_{11}}{{a}_{31}},{b}_{31}\,=\,{b}_{11},{b}_{32}=0,\\ {b}_{33} & = & 0,{b}_{34}=\displaystyle \frac{{a}_{34}{b}_{11}}{{a}_{31}}\,\cdot \,({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 2.6:{a}_{11} & = & 0,{a}_{14}=0,\\ {a}_{21} & = & 0,{a}_{22}=0,{a}_{23}=0,{a}_{24}=0,\\ {a}_{31} & = & 0,{a}_{33}=\displaystyle \frac{{a}_{13}{a}_{32}}{{a}_{12}},\\ {a}_{34} & = & 0,{b}_{12}=0,{b}_{13}=0,\\ {b}_{14} & = & \displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}},{b}_{31}={b}_{11},{b}_{32}=0,\\ {b}_{33} & = & 0,{b}_{34}=\displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}},\ ({a}_{12}\ne 0)\end{array}\end{eqnarray}$
where other parameters are arbitrary real constants.
III. Between lumps and solitary wave solutions:
When ${\eta }_{2}={\eta }_{1},{m}_{4}={m}_{2}={m}_{1}\ne 0,{m}_{3}=0$ in (12), solution (12) represents the interaction solutions between the high-order lump-type solution and solitary wave solutions $f={a}_{0}+{\xi }_{1}^{4}+{\xi }_{2}^{2}+{\xi }_{3}^{2}+{m}_{1}{{\rm{e}}}^{{\eta }_{1}}+{m}_{1}{{\rm{e}}}^{-{\eta }_{1}}+{m}_{1}\cosh {\eta }_{4}$.
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 3.1:{a}_{11} & = & 0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{21}},{a}_{14}=0,\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{31}=0,{a}_{33}=\displaystyle \frac{2{a}_{24}{a}_{32}}{3{a}_{21}},\\ {a}_{34} & = & 0,{b}_{11}=\displaystyle \frac{{a}_{21}{b}_{14}}{{a}_{24}},\\ {b}_{12} & = & 0,{b}_{13}=0,{b}_{41}=\displaystyle \frac{{a}_{21}{b}_{14}}{{a}_{24}},{b}_{42}=0,\\ {b}_{43} & = & 0,{b}_{44}={b}_{14}.\ ({a}_{21}{a}_{24}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 3.2:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{21}=\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{13}},\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{31}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{11}=\displaystyle \frac{2{a}_{12}{b}_{14}}{3{a}_{13}},\\ {b}_{12} & = & 0,{b}_{13}=0,{b}_{41}=\displaystyle \frac{2{a}_{12}{b}_{14}}{3{a}_{13}},\\ {b}_{42} & = & 0,{b}_{43}=0,{b}_{44}={b}_{14}.\ ({a}_{13}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 3.3:{a}_{11} & = & 0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}},{a}_{14}=0,\\ {a}_{21} & = & -\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{22}},{a}_{23}=\displaystyle \frac{2{a}_{22}{a}_{34}}{3{a}_{31}},\\ {a}_{24} & = & -\displaystyle \frac{{a}_{32}{a}_{34}}{{a}_{22}},{a}_{30}=\displaystyle \frac{{a}_{20}{a}_{32}}{{a}_{22}},\\ {a}_{33} & = & \displaystyle \frac{2{a}_{32}{a}_{34}}{3{a}_{31}},{b}_{11}=\displaystyle \frac{{a}_{31}{b}_{14}}{{a}_{34}},\\ {b}_{12} & = & 0,{b}_{13}=0,{b}_{41}=\displaystyle \frac{{a}_{31}{b}_{14}}{{a}_{34}},{b}_{42}\,=\,0,\\ {b}_{43} & = & 0,{b}_{44}={b}_{14}.({a}_{22}{a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 3.4:{a}_{10} & = & 0,{a}_{11}=0,{a}_{12}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{34}},{a}_{14}=0,\\ {a}_{21} & = & 0,{a}_{22}=0,{a}_{23}=0,{a}_{24}=0,\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{11}=\displaystyle \frac{{a}_{31}{b}_{14}}{{a}_{34}},\\ {b}_{12} & = & 0,{b}_{13}=0,{b}_{41}=\displaystyle \frac{{a}_{31}{b}_{14}}{{a}_{34}},\\ {b}_{42} & = & 0,{b}_{43}=0,{b}_{44}={b}_{14}.\ ({a}_{34}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 3.5:{a}_{11} & = & 0,{a}_{12}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{34}},{a}_{14}=0,\\ {a}_{21} & = & 0,{a}_{22}=0,{a}_{23}=0,{a}_{24}=0,\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{12}=0,{b}_{13}=0,\\ {b}_{14} & = & \displaystyle \frac{{a}_{34}{b}_{11}}{{a}_{31}},{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{{a}_{34}{b}_{41}}{{a}_{31}},\ ({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$
where other parameters are arbitrary real constants.

In addition to the above results in Case 3.1–Case 3.5, we can also get the same solutions as in Cases 1.1, 1.2, 1.6, 1.8 and the special results of Cases 1.3, 1.4, 1.5 when b11 = b41, respectively.

IV. Between lumps and cos–cosh solitary wave solutions:
When mi = 0(i = 1,2), m4 = m3 in (12), solution (12) represents the interaction solutions between the high-order lump-type solution and cos–cosh solitary wave solutions $f={a}_{0}+{\xi }_{1}^{4}+{\xi }_{2}^{2}+{\xi }_{3}^{2}+{m}_{3}\cos {\eta }_{3}+{m}_{3}\cosh {\eta }_{4}$.
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 4.1:{a}_{10} & = & 0,{a}_{11}=0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}},\\ {a}_{14} & = & 0,{a}_{21}=0,{a}_{22}=\displaystyle \frac{3{a}_{23}{a}_{31}}{2{a}_{34}},\\ {a}_{24} & = & 0,{a}_{32}=0,{a}_{33}=0,\\ {b}_{31} & = & 0,{b}_{33}=\displaystyle \frac{2{a}_{34}{b}_{32}}{3{a}_{31}},{b}_{34}=0,{b}_{41}=0,\\ {b}_{43} & = & \displaystyle \frac{2{a}_{34}{b}_{42}}{3{a}_{31}},{b}_{44}=0\ .\ ({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 4.2:{a}_{10} & = & 0,{a}_{11}=0,{a}_{13}=\displaystyle \frac{{a}_{12}{a}_{33}}{{a}_{32}},{a}_{14}=0,\\ {a}_{21} & = & \displaystyle \frac{2{a}_{24}{a}_{32}}{3{a}_{33}},{a}_{22}=0,\\ {a}_{23} & = & 0,{a}_{31}=0,{a}_{34}=0,\\ {b}_{32} & = & 0,{b}_{33}=0,{b}_{34}=\displaystyle \frac{3{a}_{33}{b}_{31}}{2{a}_{32}},\\ {b}_{42} & = & 0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{3{a}_{33}{b}_{41}}{2{a}_{32}}.\ ({a}_{32}{a}_{33}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 4.3:{a}_{10} & = & 0,{a}_{11}=0,{a}_{12}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{34}},{a}_{14}=0,\\ {a}_{21} & = & 0,{a}_{22}=0,{a}_{23}=0,{a}_{24}=0,\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{32}=0,{b}_{33}=0,\\ {b}_{34} & = & \displaystyle \frac{{a}_{34}{b}_{31}}{{a}_{31}},{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{{a}_{34}{b}_{41}}{{a}_{31}},\ ({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$
where other parameters are arbitrary real constants.

In addition to the above results in Cases 4.1–4.3, we can also get the special results of Cases 1.2, 1.3, 1.4(b41 = b31) and 1.9 when η3 = η1, a10 = 0, respectively.

V. Lump–soliton solutions between lumps and solitary wave solution:
When mi = 0(i = 1, 2, 3) in (12), solution (12) represents the lump–soliton solutions between the high-order lump-type solution and the solitary wave solution $f={a}_{0}+{\xi }_{1}^{4}+{\xi }_{2}^{2}+{\xi }_{3}^{2}+{m}_{4}\cosh {\eta }_{4}$.
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.1:{a}_{10} & = & 0,{a}_{11}=0,{a}_{13}=\displaystyle \frac{{a}_{12}{a}_{33}}{{a}_{32}},{a}_{14}=0,\\ {a}_{22} & = & -\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{21}},{a}_{23}=-\displaystyle \frac{{a}_{31}{a}_{33}}{{a}_{21}},\\ {a}_{24} & = & \displaystyle \frac{3{a}_{21}{a}_{33}}{2{a}_{32}},{a}_{30}=\displaystyle \frac{{a}_{20}{a}_{31}}{{a}_{21}},\\ {a}_{34} & = & \displaystyle \frac{3{a}_{31}{a}_{33}}{2{a}_{32}},{b}_{41}=0,\\ {b}_{43} & = & \displaystyle \frac{{a}_{33}{b}_{42}}{{a}_{32}},{b}_{44}=0.\ ({a}_{21}{a}_{32}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.2:{a}_{10} & = & 0,{a}_{11}=0,{a}_{12}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{34}},\\ {a}_{14} & = & 0,{a}_{21}=-\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{22}},{a}_{23}=\displaystyle \frac{2{a}_{22}{a}_{34}}{3{a}_{31}},\\ {a}_{24} & = & -\displaystyle \frac{{a}_{32}{a}_{34}}{{a}_{22}},{a}_{30}=\displaystyle \frac{{a}_{20}{a}_{32}}{{a}_{22}},{a}_{33}=\displaystyle \frac{2{a}_{32}{a}_{34}}{3{a}_{31}},\\ {b}_{42} & = & 0,{b}_{43}=0,{b}_{44}=\displaystyle \frac{{a}_{34}{b}_{41}}{{a}_{31}}\ .\ ({a}_{22}{a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.3:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{21}=-\displaystyle \frac{2{a}_{12}{a}_{32}{a}_{34}}{3{a}_{13}{a}_{22}},\\ {a}_{23} & = & \displaystyle \frac{{a}_{13}{a}_{22}}{{a}_{12}},{a}_{24}=-\displaystyle \frac{{a}_{32}{a}_{34}}{{a}_{22}},\\ {a}_{31} & = & \displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},{a}_{33}=\displaystyle \frac{{a}_{13}{a}_{32}}{{a}_{12}},{b}_{42}=0,\\ {b}_{43} & = & 0,{b}_{44}=\displaystyle \frac{3{a}_{13}{b}_{41}}{2{a}_{12}}\ .\ ({a}_{12}{a}_{13}{a}_{22}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.4:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{22}=-\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{21}},\\ {a}_{23} & = & -\displaystyle \frac{{a}_{13}{a}_{31}{a}_{32}}{{a}_{12}{a}_{21}},{a}_{24}=\displaystyle \frac{3{a}_{13}{a}_{21}}{2{a}_{12}},\\ {a}_{33} & = & \displaystyle \frac{{a}_{13}{a}_{32}}{{a}_{12}},{a}_{34}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{12}},{b}_{41}=0,\\ {b}_{43} & = & \displaystyle \frac{{a}_{13}{b}_{42}}{{a}_{12}},{b}_{44}=0\ .\ ({a}_{12}{a}_{21}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.5:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{22}=0,{a}_{23}=0,\\ {a}_{24} & = & \displaystyle \frac{3{a}_{13}{a}_{21}}{2{a}_{12}},{a}_{30}=\displaystyle \frac{2{a}_{12}{a}_{20}{a}_{34}}{3{a}_{13}{a}_{21}},\\ {a}_{31} & = & \displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},{a}_{32}=0,{a}_{33}=0,{b}_{41}=0,\\ {b}_{43} & = & \displaystyle \frac{{a}_{13}{b}_{42}}{{a}_{12}},{b}_{44}=0.\ ({a}_{12}{a}_{13}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.6:{a}_{10} & = & 0,{a}_{11}=0,{a}_{13}=\displaystyle \frac{{a}_{12}{a}_{33}}{{a}_{32}},{a}_{14}=0,\\ {a}_{21} & = & \displaystyle \frac{2{a}_{24}{a}_{32}}{3{a}_{33}},{a}_{22}=0,\\ {a}_{23} & = & 0,{a}_{31}=0,{a}_{34}=0,{b}_{42}\,=\,0,\\ {b}_{43} & = & 0,{b}_{44}=\displaystyle \frac{3{a}_{33}{b}_{41}}{2{a}_{32}}\,\cdot \ ({a}_{32}{a}_{33}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.7:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{21}=\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{13}},\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{31}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{3{a}_{13}{b}_{41}}{2{a}_{12}}\,\cdot \ ({a}_{12}{a}_{13}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.8:{a}_{10} & = & 0,{a}_{11}=0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}},\\ {a}_{14} & = & 0,{a}_{21}=0,{a}_{22}=\displaystyle \frac{3{a}_{23}{a}_{31}}{2{a}_{34}},\\ {a}_{24} & = & 0,{a}_{32}=0,{a}_{33}=0,{b}_{41}\,=\,0,\\ {b}_{43} & = & \displaystyle \frac{2{a}_{34}{b}_{42}}{3{a}_{31}},{b}_{44}=0,\ ({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$
where other parameters are arbitrary real constants.
VI. Between lumps and cos periodic wave solutions:
When mi = 0(i = 1,2,4) in (12), solution (12) represents the interaction solutions between the high-order lump-type solution and the cos periodic wave solutions $f={a}_{0}+{\xi }_{1}^{4}\,+{\xi }_{2}^{2}+{\xi }_{3}^{2}+{m}_{3}\cos {\eta }_{3}$.
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.1:{a}_{10} & = & 0,{a}_{11}=0,{a}_{13}=\displaystyle \frac{{a}_{12}{a}_{33}}{{a}_{32}},{a}_{14}=0,\\ {a}_{22} & = & -\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{21}},{a}_{23}=-\displaystyle \frac{{a}_{31}{a}_{33}}{{a}_{21}},\\ {a}_{24} & = & \displaystyle \frac{3{a}_{21}{a}_{33}}{2{a}_{32}},{a}_{30}=\displaystyle \frac{{a}_{20}{a}_{31}}{{a}_{21}},{a}_{34}=\displaystyle \frac{3{a}_{31}{a}_{33}}{2{a}_{32}},\\ {b}_{31} & = & 0,{b}_{33}=\displaystyle \frac{{a}_{33}{b}_{32}}{{a}_{32}},{b}_{34}=0.\ ({a}_{21}{a}_{32}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.2:{a}_{10} & = & 0,{a}_{11}=0,{a}_{12}=\displaystyle \frac{3{a}_{31}{a}_{13}}{2{a}_{34}},{a}_{14}=0,\\ {a}_{21} & = & -\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{22}},{a}_{23}=\displaystyle \frac{2{a}_{22}{a}_{34}}{3{a}_{31}},\\ {a}_{24} & = & -\displaystyle \frac{{a}_{32}{a}_{34}}{{a}_{22}},{a}_{30}=\displaystyle \frac{{a}_{20}{a}_{32}}{{a}_{22}},{a}_{33}=\displaystyle \frac{2{a}_{32}{a}_{34}}{3{a}_{31}},\\ {b}_{32} & = & 0,{b}_{33}=0,{b}_{34}=\displaystyle \frac{{a}_{34}{b}_{31}}{{a}_{31}}\,\cdot \ ({a}_{22}{a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.3:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,\\ {a}_{21} & = & -\displaystyle \frac{2{a}_{12}{a}_{32}{a}_{34}}{3{a}_{13}{a}_{22}},{a}_{23}\,=\,\displaystyle \frac{{a}_{13}{a}_{22}}{{a}_{12}},\\ {a}_{24} & = & -\displaystyle \frac{{a}_{32}{a}_{34}}{{a}_{22}},{a}_{31}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{33} & = & \displaystyle \frac{{a}_{13}{a}_{32}}{{a}_{12}},{b}_{32}=0,{b}_{33}=0,\\ {b}_{34} & = & \displaystyle \frac{3{a}_{13}{b}_{31}}{2{a}_{12}}\,\cdot \ ({a}_{12}{a}_{13}{a}_{22}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.4:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{22}=-\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{21}},\\ {a}_{23} & = & -\displaystyle \frac{{a}_{13}{a}_{31}{a}_{32}}{{a}_{12}{a}_{21}},{a}_{24}=\displaystyle \frac{3{a}_{13}{a}_{21}}{2{a}_{12}},\\ {a}_{33} & = & \displaystyle \frac{{a}_{13}{a}_{32}}{{a}_{12}},{a}_{34}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{12}},{b}_{31}=0,\\ {b}_{33} & = & \displaystyle \frac{{a}_{13}{b}_{32}}{{a}_{12}},{b}_{34}=0.\ ({a}_{12}{a}_{21}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.5:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{22}=0,\\ {a}_{23} & = & 0,{a}_{24}=\displaystyle \frac{3{a}_{13}{a}_{21}}{2{a}_{12}},\\ {a}_{30} & = & \displaystyle \frac{2{a}_{12}{a}_{20}{a}_{34}}{3{a}_{13}{a}_{21}},{a}_{31}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{31}=0,\\ {b}_{33} & = & \displaystyle \frac{{a}_{13}{b}_{32}}{{a}_{12}},{b}_{34}=0.\ ({a}_{12}{a}_{13}{a}_{21}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.6:{a}_{10} & = & 0,{a}_{11}=0,\\ {a}_{13} & = & \displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}},{a}_{14}=0,{a}_{21}=0,\\ {a}_{22} & = & \displaystyle \frac{3{a}_{23}{a}_{31}}{2{a}_{34}},{a}_{24}=0,\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{31}=0,\\ {b}_{33} & = & \displaystyle \frac{2{a}_{34}{b}_{32}}{3{a}_{31}},{b}_{34}=0.\ ({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.7:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{21}=\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{13}},\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{31}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{32}\,=\,0,{b}_{33}=0,\\ {b}_{34} & = & \displaystyle \frac{3{a}_{13}{b}_{31}}{2{a}_{12}}.\ ({a}_{12}{a}_{13}\ne 0)\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.8:{a}_{10} & = & 0,{a}_{11}=0,{a}_{13}=\displaystyle \frac{{a}_{12}{a}_{33}}{{a}_{32}},{a}_{14}=0,\\ {a}_{21} & = & \displaystyle \frac{2{a}_{24}{a}_{32}}{3{a}_{33}},{a}_{22}=0,\\ {a}_{23} & = & 0,{a}_{31}=0,{a}_{34}=0,\\ {b}_{32} & = & 0,{b}_{33}=0,{b}_{34}=\displaystyle \frac{3{a}_{33}{b}_{31}}{2{a}_{32}},\ ({a}_{32}{a}_{33}\ne 0)\end{array}\end{eqnarray}$
where other parameters are arbitrary real constants.
These sets of solutions for the parameters generate 33 classes of combination solutions ${f}_{i},1\leqslant i\leqslant 33$ to the generalized bilinear Jimbo–Miwa equation (5), and then the resulting combination solutions present 33 classes of interaction solutions ${u}_{i},1\leqslant i\leqslant 33$ to Equation (1) under transformation (2). Therefore, various kinds of interaction solutions could be constructed explicitly this way.

It is interesting that we can obtain the same solutions to Case 1.1–1.9 when ${g}_{3}({\eta }_{3})=\sin {\eta }_{3},{g}_{4}({\eta }_{4})\,=\sinh {\eta }_{4}$. Due to the lack of space, we omit the expression of interaction solution between the high-order lump-type solution and the periodic cross-kink wave solutions, namely $f={a}_{0}+{\xi }_{1}^{4}+{\xi }_{2}^{2}+{\xi }_{3}^{2}+{m}_{1}{{\rm{e}}}^{{\eta }_{1}}+{m}_{2}{{\rm{e}}}^{-{\eta }_{2}}+{m}_{3}\sin {\eta }_{3}\,+{m}_{4}\sinh {\eta }_{4}$.

4. Dynamical characteristics

In this section, to analyze the dynamical characteristics of the interaction solutions, we plot various three-dimensional, contour and density plots for the (3+1)-dimensional Jimbo–Miwa equation.

4.1. Three-dimensional and contour plots of the interaction solutions to Case 1.2

As an example, if we substitute the coefficient of Case 1.2 into (12), we can get f1 as follows:
$\begin{eqnarray}\begin{array}{rcl}{f}_{1} & = & {a}_{0}+{\left({a}_{10}+{a}_{12}y+{a}_{13}z\right)}^{4}\\ & & +{\left({a}_{20}+\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{13}}x+{a}_{24}t\right)}^{2}\\ & & +{\left({a}_{30}+\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}}x+{a}_{34}t\right)}^{2}\\ & & +{m}_{1}{{\rm{e}}}^{{\eta }_{1}}+{m}_{1}{{\rm{e}}}^{-{\eta }_{1}}+{m}_{1}\cos {\eta }_{1}+{m}_{1}\cosh {\eta }_{4},\end{array}\end{eqnarray}$
where ${a}_{0},{a}_{10},{a}_{12},{a}_{13}$, ${a}_{20},{a}_{24},{a}_{30},{a}_{34}$, ${b}_{10},{b}_{11},{b}_{40},{b}_{41}$, ${m}_{1}({m}_{1}{a}_{12}{a}_{13}\ne 0)$ are arbitrary real constants, and ${\eta }_{1}\,={b}_{10}+{b}_{11}x+\displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}}t$, ${\eta }_{4}={b}_{40}+{b}_{41}x+\displaystyle \frac{3{a}_{13}{b}_{41}}{2{a}_{12}}t$.
The function f1 is well defined, positive, analytical and guarantees the localization of u in all directions in the (x, y)-plane. The interaction solution to the (3+1)-dimensional Jimbo–Miwa Equation (1) can be directly obtained via transformation (2)
$\begin{eqnarray}u(x,y,z,t)=\displaystyle \frac{2{f}_{{ix}}(x,y,z,t)}{{f}_{i}(x,y,z,t)},\end{eqnarray}$
where fi(x, y, z, t) is given in (53).
We choose the following parameters to illustrate the interaction solution (54) between the high-order lump-type solution and the three-wave solutions to the (3+1)-dimensional Jimbo–Miwa equation (1),
$\begin{eqnarray}\begin{array}{rcl}{a}_{0} & = & 3,{a}_{10}=6,{a}_{12}=10,{a}_{13}=1.5,{a}_{20}=2,\\ {a}_{24} & = & 5,{a}_{30}=2,{a}_{34}=5,\\ {b}_{10} & = & 1,{b}_{11}=3,{b}_{40}=1,{b}_{41}=3,{m}_{1}=1,z=y.\end{array}\end{eqnarray}$
The physical properties and structures for interaction solution (54) are shown in figure 1. It shows the three-dimensional dynamic graphs and contour plots in the (x, y)-plane when $t=-60,-20,-10,0,10,20,40,60$ respectively. The three-dimensional graphs reflect the localized structures. We can see that the high-order lump-type wave, double exponential function, trigonometric function and hyperbolic function waves react with each other and keep moving forward.
Figure 1. Three-dimensional plots and contour plots of the wave with the parameters (55) at times t = − 60, − 20, − 10,0,10,20,40,60.
The wave consists of two parts, including a high-order lump-type wave and an other functions wave (double-exponential function, trigonometric function and hyperbolic function). The lump wave moves in one direction to the other with the variable t. The amplitude of the lump changes with the variable t, and especially when t = 0, the energy and amplitude of the lump–soliton reaches the maximum. This phenomenon is very strange and analogous to rogue waves. The process of interaction changes the amplitudes, shapes and velocities of both waves. This type of interaction solutions provide a method to forecast the appearance of rogue waves, such as financial rogue waves, optical rogue waves and plasma rogue waves, through analyzing the relations between the lump wave part and the soliton wave part.

4.2. Three-dimensional, contour and density plots of the interaction solutions to Case 4.1

If we substitute the coefficient of Case 4.1 into (12), we can get f2 as follows:
$\begin{eqnarray}\begin{array}{rcl}{f}_{2} & = & {a}_{0}+{\left({a}_{12}y+\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}}z\right)}^{4}\\ & & +{\left({a}_{20}+\displaystyle \frac{3{a}_{23}{a}_{31}}{2{a}_{34}}y+{a}_{23}z\right)}^{2}\\ & & +{\left({a}_{30}+{a}_{31}x+{a}_{34}t\right)}^{2}+{m}_{1}\cos ({b}_{30}+{b}_{32}y\\ & & +\displaystyle \frac{2{a}_{34}{b}_{32}}{3{a}_{31}}z)+{m}_{1}\cosh ({b}_{40}+{b}_{42}y+\displaystyle \frac{2{a}_{34}{b}_{42}}{3{a}_{31}}z),\end{array}\end{eqnarray}$
where ${a}_{0},{a}_{12},{a}_{20},{a}_{23},{a}_{30},{a}_{31},{a}_{34},{b}_{30},{b}_{32},{b}_{40},{b}_{42}({m}_{1}{a}_{31}{a}_{34}\,\ne 0)$ are arbitrary real constants. By substituting (56) into (2), we get interaction solution (54) to (3+1)-dimensional Jimbo–Miwa Equation (1).
We choose the following parameters to illustrate the interaction solution (54) between the high-order lump-type solution and the cos–cosh solitary wave solutions of the (3+1)-dimensional Jimbo–Miwa equation (1),
$\begin{eqnarray}\begin{array}{rcl}{a}_{0} & = & -1,{a}_{12}=1,{a}_{20}=-1,{a}_{23}=-2,\\ {a}_{30} & = & 3,{a}_{31}=-1,{a}_{34}=2,\\ {b}_{30} & = & 1,{b}_{32}=2,{b}_{40}=1.5,{b}_{42}=-2,{m}_{1}=6,z=y.\end{array}\end{eqnarray}$
The physical properties and structures of the interaction solution (54) are shown in figure 2. It shows the three-dimensional dynamic graphs A1, B1, C1, corresponding contour maps A2, B2, C2 and density plots A3, B3, C3 in the (x, y)-plane when t = − 20, 0, 20, respectively. The three-dimensional graphs reflect the localized structures, and the density plots show the energy distribution. We can see that the high-order lump-type wave, trigonometric function and hyperbolic function wave react with each other and keep moving forward.
Figure 2. Three-dimensional plots, contour plots and density plots of the wave with the parameters (57) at times t = − 20 (A1,A2,A3), t = 0 (B1,B2,B3), t = 20 (C1,C2,C3).

5. Conclusion

In this paper, we gave the form of general interaction solution to the (3+1)-dimensional Jimbo–Miwa equation. The general interaction solution contained classical interaction solutions, such as the lump–kink solution and the lump–soliton solution. As an example, by using the generalized bilinear method and symbolic computation software Maple, we successfully construct novel interaction solutions between the high-order lump-type solution and other functions of the (3+1)-dimensional Jimbo–Miwa equation, such as, three-wave solutions, breather solutions, solitary wave solutions, cos–cosh solitary wave solutions, lump–soliton solutions and cos periodic wave solutions. Three-dimensional plots, contour plots and density plots of these waves may be observed in figures 12, respectively. We can find the physical structure and characteristics of the interactions between high-order lump-type solutions and other function waves.
The new interaction solutions obtained in this paper will greatly expand the exact solutions to the (3+1)-dimensional Jimbo–Miwa equation in the existing literature [36, 12, 13, 2430, 5154]. These results are significant to understand the propagation processes of nonlinear waves in fluid mechanics and the explanation of some special physical problems.

Conflict of Interest

The authors declare that they have no conflicts of interest.
1
X Ma W X Yu J Khalique C M 2016 Commun. Nonlinear Sci. Numer. Simulat 31 40

DOI

2
Wang X B Tian S F Qin C Y Zhang T T 2017 Appl. Math. Lett. 72 58

DOI

3
Xu G Q 2006 Chaos, Solitons Fractals 30 71

DOI

4
Wazwaz A M 2008 Appl. Math. Comput. 203 592

DOI

5
Wazwaz A M 2017 Appl. Math. Lett. 64 21

DOI

6
Manafian J 2018 Comput. Math. Appl. 76 1246

DOI

7
Zhang X E Chen Y 2018 Nonlinear Dyn. 93 2169

DOI

8
Z S Chen Y N 2015 Chaos, Solitons Fractals 81 218

DOI

9
Xu H X Yang Z Y Zhao L C Duan L Yang W L 2018 Phys. Lett. A 382 1738

DOI

10
Dong H H Zhang Y F 2015 Commun. Theor. Phys. 63 401

DOI

11
Liu J G Yan H 2017 Nonlinear Dyn 90 363

DOI

12
Zhang R F Bilige S D 2019 Mode. Phys. Lett. B 33 1950067

DOI

13
Zhang R F Bilige S D Fang T Chaolu T M 2019 Comput. Math. Appl. 78 754

DOI

14
Kaur L Wazwaz A M 2018 Optik-International Journal for Light and Electron Optics 174 447

DOI

15
Satsuma J Ablowitz M J 1979 J. Math. Phys. 20 1496

DOI

16
Ma W X 2015 Phys. Lett. A 379 1975

DOI

17
Ma W X Zhou Y 2018 J. Differ. Equations 264 2633

DOI

18
Ma W X Qin Z Y X 2016 Nonlinear Dyn. 84 923

DOI

19
Ma W X Zhou Y Dougherty R 2016 Int. J. Mode. Phys. B 30 1640018

DOI

20
Yang J Y Ma W X 2016 Int. J. Mode. Phys. B 30 1640028

DOI

21
Yang J Y Ma W X Qin Z Y 2018 Anal. Math. Phys. 8 427

DOI

22
Hua Y F Guo B L Ma W X X 2019 Appl. Math. Model. 74 184

DOI

23
Chen S T Ma W X 2018 Front. Math. China 13 525

DOI

24
Ma W X 2016 Int. J. Nonlinear Sci. Numer. Simul. 17 355

DOI

25
Yang J Y Ma W X 2017 Comput. Math. Appl. 73 220

DOI

26
Batwa S Ma W X 2018 Comput. Math. Appl. 76 1576

DOI

27
Zhang X E Chen Y 2017 Commun. Nonlinear Sci. Numer. Simulat 52 24

DOI

28
Sun H Q Chen A H 2017 Appl. Math. Lett. 68 55

DOI

29
Wang Y H Wang H Dong H H Zhang H S Chaolu T M 2018 Nonlinear Dyn. 92 487

DOI

30
Yong X L Li X J Huang Y H 2018 Appl. Math. Lett. 86 222

DOI

31
Ma W X 2018 J. Geom. Phys. 133 10

DOI

32
Liu J G 2018 Appl. Math. Lett. 86 36

DOI

33
X Chen S T Ma W X 2016 Nonlinear Dyn. 86 523

DOI

34
X Wang J P Lin F H Zhou X W 2018 Nonlinear Dyn. 91 1249

DOI

35
X Ma W X 2016 Nonlinear Dyn. 85 1217

DOI

36
Manafian J Lakestant M 2019 Pramana-J. Phys. 92 41

DOI

37
Fang T Wang Y H 2018 Comput. Math. Appl. 76 1476

DOI

38
Zhang Y Dong H H Zhang X E Yang H W 2017 Comput. Math. Appl. 73 246

DOI

39
Zhou Y Manukure S Ma W X 2019 Commun. Nonlinear Sci. Numer. Simulat 68 56

DOI

40
Wang H Wang Y H Ma W X Chaolu T M 2018 Mode. Phys. Lett. B 32 1850376

DOI

41
Fang T Wang H Wang Y H Ma W X 2019 Commun. Theor. Phys. 71 927

DOI

42
Ahmed I Seadawy A R Lu D C 2019 Int. J. Mode. Phys. B 33 1950019

DOI

43
Manukure S Zhou Y 2019 Int. J. Mode. Phys. B 33 1950038

DOI

44
Lv J Q Bilige S D 2017 Nonlinear Dyn 90 2119

DOI

45
J Q Bilige S D Chaolu T M 2018 Nonlinear Dyn. 91 1669

DOI

46
Zhang R F Bilige S D Bai Y X J Q Gao X Q 2018 Mode. Phys. Lett. B 32 1850074

DOI

47
J Q Bilige S D 2019 Anal. Math. Phys. 9 1497

DOI

48
J Q Bilige S D Gao X Q 2019 Int. J. Nonlin. Sci. Num. 20 33

DOI

49
J Q Bilige S D 2018 Mode. Phys. Lett. B 32 1850311

DOI

50
Gao X Q Bilige S D J Q Bai Y X Zhang R F Chaolu T M 2019 Therm. Sci. 23 2437

DOI

51
Jimbo M Miwa T 1983 Publ. Res. Inst. Math. Sci. Kyoto Univ. 19 943

DOI

52
Cao B T 2010 Acta Appl. Math. 112 181

DOI

53
Özis T Aslan Ï 2008 Phys. Lett. A 372 7011

DOI

54
Ma W X Lee J H 2009 Chaos, Solitons Fractals 42 1356

DOI

55
Ma W X 2011 Stud. Nonlinear Sci. 2 140

56
Ma W X 2013 J. Phys. Conf. Ser. 411 012021

DOI

Outlines

/