1. Introduction
2. Basic definitions
The conformable fractional derivative of an $f$ function for an arbitrary order of $\mu $ is given by
Let $f$ and $g$ are $\mu $-differentiable functions at point $t\gt 0$ for $0\lt \mu \leqslant 1$. Then
${T}_{\mu }({mf}+{ng})={{mT}}_{\mu }(f)+{{nT}}_{\mu }(g)$ for all $m,n\in {\mathbb{R}}$ | |
${T}_{\mu }({t}^{p})={{pt}}^{p-\mu }$ for all p | |
${T}_{\mu }(f.g)={{fT}}_{\mu }(g)+{{gT}}_{\mu }(f)$ | |
${T}_{\mu }(\tfrac{f}{g})=\tfrac{{{gT}}_{\mu }(f)-{{fT}}_{\mu }(g)}{{g}^{2}}$ | |
${T}_{\mu }(c)=0$ for all $f(t)=c$ constant functions | |
Moreover, ${T}_{\mu }(f)(t)={t}^{1-\mu }\tfrac{{df}(t)}{{dt}},$ if f is differentiable. |
Let $f$ function is defined with $n$ variables ${x}_{1},\,\ldots ,\,{x}_{n}.$ The conformable partial derivatives of $f$ of order $\mu \in (0,1]$ in ${x}_{i}$ is given by [17]
The conformable integral of an $f$ function for $\mu \geqslant 0$ is defined as [18]:
Assume that $f$ is an infinitely $\mu -$ differentiable function at a neighborhood of a point ${t}_{0}$ for some $0\lt \mu \leqslant 1,$ then $f$ has the fractional power series expansion of the form:
$\mathop{\sum _{n=0}}\limits^{\infty }{f}_{n}(x){\left(t-{t}_{0}\right)}^{n\mu }$ is called a multiple fractional power series at ${t}_{0}=0,$ where $0\leqslant m-1\lt \mu \,\lt m,t$ is a variable and ${f}_{n}(x)$ are functions termed the coefficients of the series [19, 20].
Assume that $u(x,t)$ has a multiple fractional power series representation at ${t}_{0}=0$ of the form [19]
3. Governing equation
4. Description of the methods
4.1. Sub-equation method
4.2. Residual power series method (RPSM)
5. Results and discussion
5.1. Analytical solutions of the Burgers-K-P equation
5.2. Approximate solutions of the Burgers-K-P equation
In this case, take the initial condition
Figure 1. (Case 5.1) Comparison for a0 = 0.01, k = 0.1, w = 0.5, $\nu =0.01,$ λ = 0.9, l = 5, y = 1, t = 0.1 and μ = 0.35. |
Figure 2. (Case 5.1) Comparison for a0 = 0.01, k = 0.1, w = 0.5, $\nu =0.01,$ λ = 0.9, l = 5, y = 1, t = 0.1 and μ = 0.50. |
Figure 3. (Case 5.1) Comparison for a0 = 0.01, k = 0.1, w = 0.5, $\nu =0.01,$ λ = 0.9, l = 5, y = 1, t = 0.1 and μ = 0.75. |
Table 1. (Case 5.1) RPSM approximate results and comparison with the exact solutions by absolute errors for a0 = 0.01, k = 0.1, w = 0.5, $\nu =0.01,$ λ = 0.9, l = 5, y = 1 and t = 0.1. |
μ = 0.35 | μ = 0.50 | μ = 0.75 | |||||||
---|---|---|---|---|---|---|---|---|---|
x | RPSM | Exact | Abs. Error | RPSM | Exact | Abs. Error | RPSM | Exact | Abs. Error |
0.0 | 0.010 731 7 | 0.010 761 3 | 2.959 80E-5 | 0.010 490 1 | 0.010 490 6 | 5.70129E-7 | 0.010 402 7 | 0.010 402 7 | 3.465 43E-9 |
0.1 | 0.010 729 2 | 0.010 758 4 | 2.921 92E-5 | 0.010 488 9 | 0.010 489 4 | 5.63592E-7 | 0.010 401 9 | 0.010 401 9 | 3.427 19E-9 |
0.2 | 0.010 726 7 | 0.010 755 5 | 2.884 61E-5 | 0.010 487 7 | 0.010 488 2 | 5.57142E-7 | 0.010 401 1 | 0.010 401 1 | 3.389 45E-9 |
0.3 | 0.010 724 2 | 0.010 752 7 | 2.847 87E-5 | 0.010 486 5 | 0.010 487 1 | 5.50778E-7 | 0.010 400 3 | 0.010 400 3 | 3.352 19E-9 |
0.4 | 0.010 721 7 | 0.010 749 9 | 2.811 67E-5 | 0.010 485 3 | 0.010 485 9 | 5.44499E-7 | 0.010 399 5 | 0.010 399 5 | 3.315 41E-9 |
0.5 | 0.010 719 3 | 0.010 747 1 | 2.776 03E-5 | 0.010 484 2 | 0.010 484 7 | 5.38304E-7 | 0.010 398 7 | 0.010 398 7 | 3.279 10E-9 |
0.6 | 0.010 716 9 | 0.010 744 3 | 2.740 91E-5 | 0.010 483 0 | 0.010 483 5 | 5.32190E-7 | 0.010 397 9 | 0.010 397 9 | 3.243 25E-9 |
0.7 | 0.010 714 5 | 0.010 741 5 | 2.706 33E-5 | 0.010 481 8 | 0.010 482 4 | 5.26158E-7 | 0.010 397 1 | 0.010 397 1 | 3.207 86E-9 |
0.8 | 0.010 712 1 | 0.010 738 8 | 2.672 26E-5 | 0.010 480 7 | 0.010 481 2 | 5.20206E-7 | 0.010 396 3 | 0.010 396 3 | 3.172 92E-9 |
0.9 | 0.010 709 7 | 0.010 736 1 | 2.638 69E-5 | 0.010 479 5 | 0.010 480 0 | 5.14332E-7 | 0.010 395 5 | 0.010 395 5 | 3.138 42E-9 |
1.0 | 0.010 707 3 | 0.010 733 4 | 2.605 63E-5 | 0.010 478 4 | 0.010 478 9 | 5.08535E-7 | 0.010 394 8 | 0.010 394 8 | 3.104 36E-9 |
Now, consider the initial condition
Figure 4. (Case 5.2) Comparison for a0 = 0.01, k = 0.1, w = 0.5, $\nu =0.01,$ λ = 0.9, l = 5, y = 1, σ = −0.5, $t=0.1$ and μ = 0.45. |
Figure 5. (Case 5.2) Comparison for a0 = 0.01, k = 0.1, w = 0.5, $\nu =0.01,$ λ = 0.9, l = 5, y = 1, σ = −0.5, $t=0.1$ and μ = 0.55. |
Figure 6. (Case 5.2) Comparison for a0 = 0.01, k = 0.1, w = 0.5, $\nu =0.01,$ λ = 0.9, l = 5, y = 1, σ = −0.5, $t=0.1$ and μ = 0.75. |
Table 2. (Case 5.2) RPSM approximate results and comparison with the exact solutions by absolute errors for a0 = 0.01, k = 0.1, w = 0.5, $\nu =0.01,$ λ = 0.9, l = 5, y = 1, σ = −0.5 and t = 0.1. |
μ = 0.45 | μ = 0.55 | μ = 0.75 | |||||||
---|---|---|---|---|---|---|---|---|---|
x | RPSM | Exact | Abs. Error | RPSM | Exact | Abs. Error | RPSM | Exact | Abs. Error |
0.0 | 0.009 361 2 | 0.008 986 0 | 3.752 06E-4 | 0.009 428 7 | 0.009 389 3 | 3. 93727E-5 | 0.009 966 8 | 0.009 966 2 | 5.890 58E-7 |
0.1 | 0.009 358 7 | 0.008 990 8 | 3.678 53E-4 | 0.009 435 6 | 0.009 397 5 | 3.81430E-5 | 0.009 976 8 | 0.009 976 2 | 5.569 00E-7 |
0.2 | 0.009 356 1 | 0.008 995 8 | 3.602 89E-4 | 0.009 442 6 | 0.009 405 7 | 3.68946E-5 | 0.009 986 8 | 0.009 986 2 | 5.246 58E-7 |
0.3 | 0.009 353 3 | 0.009 000 8 | 3.525 22E-4 | 0.009 449 6 | 0.009 414 0 | 3.56291E-5 | 0.009 996 7 | 0.009 996 2 | 4.923 68E-7 |
0.4 | 0.009 350 3 | 0.009 005 8 | 3.445 62E-4 | 0.009 456 6 | 0.009 422 3 | 3.43478E-5 | 0.010 006 7 | 0.010 006 3 | 4.600 65E-7 |
0.5 | 0.009 347 3 | 0.009 010 9 | 3.364 17E-4 | 0.009 463 7 | 0.009 430 6 | 3.30521E-5 | 0.010 016 7 | 0.010 016 3 | 4.277 82E-7 |
0.6 | 0.009 344 1 | 0.009 016 0 | 3.280 97E-4 | 0.009 470 8 | 0.009 439 0 | 3.17437E-5 | 0.010 026 7 | 0.010 026 3 | 3.955 54E-7 |
0.7 | 0.009 340 8 | 0.009 021 2 | 3.196 12E-4 | 0.009 477 9 | 0.009 447 5 | 3.04238E-5 | 0.010 036 6 | 0.010 036 3 | 3.634 15E-7 |
0.8 | 0.009 337 4 | 0.009 026 4 | 3.109 72E-4 | 0.009 485 1 | 0.009 456 0 | 2.90941E-5 | 0.010 046 6 | 0.010 046 3 | 3.313 97E-7 |
0.9 | 0.009 333 9 | 0.009 031 7 | 3.021 85E-4 | 0.009 492 3 | 0.009 464 5 | 2.77559E-5 | 0.010 056 5 | 0.010 056 2 | 2.995 31E-7 |
1.0 | 0.009 330 3 | 0.009 037 0 | 2.932 61E-4 | 0.009 499 5 | 0.009 473 1 | 2.64106E-5 | 0.010 066 5 | 0.010 066 2 | 2.678 50E-7 |