Welcome to visit Communications in Theoretical Physics,
Atomic, Molecular, Optical (AMO) and Plasma Physics, Chemical Physics

N1-soliton solution for Schrödinger equation with competing weakly nonlocal and parabolic law nonlinearities

  • Mohammed O Al-Amr , 1 ,
  • Hadi Rezazadeh , 2 ,
  • Khalid K Ali , 3 ,
  • Alper Korkmazki , 4
Expand
  • 1Department of Mathematics, College of Computer Sciences and Mathematics, University of Mosul, Mosul 41002, Iraq
  • 2Faculty of Engineering Technology, Amol University of Special Modern Technologies, Amol, Iran
  • 3Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt
  • 4Nord Staße 9, Weimar, Germany

Received date: 2020-01-25

  Revised date: 2020-03-13

  Accepted date: 2020-04-09

  Online published: 2020-06-10

Copyright

© 2020 Chinese Physical Society and IOP Publishing Ltd

Abstract

The nonlocal nonlinear Schrödinger equation (NNLSE) with competing weakly nonlocal nonlinearity and parabolic law nonlinearity is explored in the current work. A powerful integration tool, which is a modified form of the simple equation method, is used to construct the dark and singular 1-soliton solutions. It is shown that the modified simple equation method provides an effective and powerful mathematical gadget for solving various types of NNLSEs.

Cite this article

Mohammed O Al-Amr , Hadi Rezazadeh , Khalid K Ali , Alper Korkmazki . N1-soliton solution for Schrödinger equation with competing weakly nonlocal and parabolic law nonlinearities[J]. Communications in Theoretical Physics, 2020 , 72(6) : 065503 . DOI: 10.1088/1572-9494/ab8a12

1. Introduction

The dimensionless form of the Schrödinger equation with nonlocal and cubic–quintic nonlinearities with spatio-temporal dispersion is given by
$\begin{eqnarray}\begin{array}{l}{{\rm{i}}{q}}_{t}+{\rho }_{1}{q}_{{xx}}+{\rho }_{2}{q}_{{xt}}\\ \,+\left({b}_{1}{\left|q\right|}^{2}+{b}_{2}\,{\left|q\right|}^{4}\right)q\\ \,+{b}_{3}{\left({\left|q\right|}^{2}\right)}_{{xx}}q=0,\end{array}\end{eqnarray}$
where q = q(x, t) is a complex-valued unknown function with slowly changing amplitude, ρi (i = 1, 2) are the parameters with ρ1 being a diffraction coefficient, bj (j = 1, 2, 3) are constant coefficients, and subscripts denote partial derivatives [1, 2]. The coefficient b3 denotes nonlocal weak nonlinearity as b1 and b2 are cubic and quintic nonlinear term coefficients, respectively [3]. ρ2 represents the coefficient of spatio-temporal dispersion [2]. This term is added to the model in order to satisfy the well-posedness against standard group-velocity dispersion [2].
So far various techniques have been proposed to set solutions in different function forms covering exponential, rational, hyperbolic functions and periodic and soliton solutions [432]. Many of these solutions are, in fact, based on predicting a solution with some unknown parameters and determining them by substitution into the governing model. Without any doubt, the $\tanh (.)$ method [33] is one of ancestors of all of those predicted solution approaches. Extended or generalized forms of this method were also used to solve many problems arising in various fields in engineering or in natural sciences [34, 35]. In the subsequent years, lots of smart methods have been derived. Most of them are based on some simple ordinary differential equations (ODEs), their structures and solutions. Various forms of Kudryashov’s approach have been used to solve many model equations [3638]. Some methods are based on Riccati equations [39, 40]. The (G′/G)-expansion approach is also constructed on some ODE of second order [4143]. Simple equation methods are also derived for some simple ODEs and the relations among derivative terms, dependent variables and their solutions [44, 45, 46, 47].
In the present paper, we derive a modified form of the simple equation approach that has many solutions in different forms. In the first stage, a compatible wave transform is implemented to reduce the governing equation to some ODE. Since the governing equation is in complex form, the resulting ODE is also derived in complex form. The constraints among the coefficients reduce the resulting system derived from imaginary and real parts of the equation to a unique ODE. In the final stage, the predicted solution is substituted into the resulting ODE after determination of its degree by the homogeneous balance routine. Many kinds of solutions are constructed in various forms covering hyperbolic and exponential function forms.

2. Mathematical Analysis

In order to solve the model, the following hypothesis is selected:
$\begin{eqnarray}q(x,t)=P(\eta ){{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}\left(x,t\right)},\end{eqnarray}$
where P(η) represents the shape of the pulse and
$\begin{eqnarray}\eta =x-{vt},\end{eqnarray}$
and the phase component is defined as
$\begin{eqnarray}{\rm{\Phi }}\left(x,t\right)=-\kappa x+\omega t+{\theta }_{0},\end{eqnarray}$
where κ, ω and θ0 represent the frequency, the wavenumber and the phase constant respectively.
Substituting (2) into equation (1) and decomposing into real and imaginary parts gives
$\begin{eqnarray}\begin{array}{l}\left({\rho }_{1}-v{\rho }_{2}\right)P^{\prime\prime} -(\omega +{\rho }_{1}{\kappa }^{2}-\kappa \omega {\rho }_{2})P+{b}_{1}{P}^{3}\\ \,+\,{b}_{2}{P}^{5}+2{b}_{3}\left\{P{\left(P^{\prime} \right)}^{2}+{P}^{2}P^{\prime\prime} \right\}=0,\end{array}\end{eqnarray}$
and
$\begin{eqnarray}v-{\rho }_{2}\left(\kappa v+\omega \right)+2{\rho }_{1}\kappa =0.\end{eqnarray}$
From (6), setting the coefficients of the linearly independent functions to zero gives the speed of the soliton as
$\begin{eqnarray}v=\displaystyle \frac{{\rho }_{2}\omega -2{\rho }_{1}\kappa }{1-{\rho }_{2}\kappa }.\end{eqnarray}$
There is a constraint
$\begin{eqnarray}{\rho }_{2}\kappa \ne 1.\end{eqnarray}$
By applying equation (7) in equation (5), we get
$\begin{eqnarray}\begin{array}{l}\left({\rho }_{1}\,M-\left({\rho }_{2}\omega -2{\rho }_{1}\kappa \right){\rho }_{2}\right)P^{\prime\prime} \\ \,-\,M(\omega +{\rho }_{1}{\kappa }^{2}-\kappa \omega {\rho }_{2})P+{b}_{1}\,M\,{P}^{3}\\ \,+\,{b}_{2}\,M\,{P}^{5}+2{b}_{3}\,M\left\{P{\left(P^{\prime} \right)}^{2}+{P}^{2}P^{\prime\prime} \right\}=0,\end{array}\end{eqnarray}$
where
$\begin{eqnarray*}M=1-{\rho }_{2}\kappa .\end{eqnarray*}$
Balancing P5 with P2P″ in equation (9), then we get N = 1.

2.1. Application of modified simple equation method

In order to handle equation (9) by means of the modified simple equation method, we assume that equation (9) possesses the following formal solution:
$\begin{eqnarray}P(\eta )={A}_{0}+{A}_{1}\left(\displaystyle \frac{\psi ^{\prime} }{\psi }\right),\end{eqnarray}$
where A0 and A1 are constants such that ${A}_{1}\ne 0$ , and P(η) is an unknown function to be identified. One can easily obtain
$\begin{eqnarray}P^{\prime} ={A}_{1}\left[\displaystyle \frac{\psi ^{\prime\prime} }{\psi }-{\left(\displaystyle \frac{\psi ^{\prime} }{\psi }\right)}^{2}\right],\end{eqnarray}$
$\begin{eqnarray}P^{\prime\prime} ={A}_{1}\left[\displaystyle \frac{\psi \prime\prime\prime }{\psi }-3\displaystyle \frac{\psi ^{\prime} \psi ^{\prime\prime} }{{\psi }^{2}}+2{\left(\displaystyle \frac{\psi ^{\prime} }{\psi }\right)}^{3}\right].\end{eqnarray}$
By substituting equations (10)–(12) into equation (9) and equating the coefficients of ${\psi }^{0},{\psi }^{-1},{\psi }^{-2},{\psi }^{-3},{\psi }^{-4}$ and ψ−5 to zero, we get
$\begin{eqnarray}-M\left({k}^{2}{\rho }_{1}-k\omega {\rho }_{2}+\omega \right){A}_{0}+{b}_{1}{{MA}}_{0}^{3}+{b}_{2}{{MA}}_{0}^{5}=0,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}-\left(\left(\left(-2{A}_{0}^{2}{b}_{3}-{\rho }_{1}\right)M-2k{\rho }_{1}{\rho }_{2}+\omega {\rho }_{2}^{2}\right)\psi \prime\prime\prime \right.\\ \left.+\,M\psi ^{\prime} \left(-5{A}_{0}^{4}{b}_{2}+{k}^{2}{\rho }_{1}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right)\right){A}_{1}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}-3{A}_{1}\left(\displaystyle \frac{-4}{3}M\psi \prime\prime\prime \psi ^{\prime} {A}_{0}{A}_{1}{b}_{3}-\displaystyle \frac{2}{3}M{\left(\psi ^{\prime\prime} \right)}^{2}{A}_{0}{A}_{1}{b}_{3}\right.\\ \,+\,\left(\left(2{A}_{0}^{2}{b}_{3}+{\rho }_{1}\right)M+2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}\right)\psi ^{\prime} \psi ^{\prime\prime} \\ \left.\,-\,\displaystyle \frac{10}{3}{A}_{0}{A}_{1}{\left(\psi ^{\prime} \right)}^{2}M\left({A}_{0}^{2}{b}_{2}+\displaystyle \frac{3}{10}{b}_{1}\right)\right)=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}2\left(M\psi \prime\prime\prime \psi ^{\prime} {A}_{1}^{2}{b}_{3}+M{\left(\psi ^{\prime\prime} \right)}^{2}{A}_{1}^{2}{b}_{3}-8M\psi ^{\prime} \psi ^{\prime\prime} {A}_{0}{A}_{1}{b}_{3}\right.\\ \,+\,\left(\left(\left(5{A}_{0}^{2}{b}_{2}+\displaystyle \frac{1}{2}{b}_{1}\right){A}_{1}^{2}+2{A}_{0}^{2}{b}_{3}+{\rho }_{1}\right)M\right.\\ \,+\,\left.\left.2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}\right){\left(\psi ^{\prime} \right)}^{2}\Space{0ex}{3.4ex}{0ex}\right){A}_{1}\psi ^{\prime} =0,\end{array}\end{eqnarray}$
$\begin{eqnarray}5{A}_{1}^{2}M{\left(\psi ^{\prime} \right)}^{3}\left(-2\psi ^{\prime\prime} {A}_{1}{b}_{3}+{A}_{0}\psi ^{\prime} \left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)\right)=0,\end{eqnarray}$
$\begin{eqnarray}M{\left(\psi ^{\prime} \right)}^{5}{A}_{1}^{3}\left({A}_{1}^{2}{b}_{2}+6{b}_{3}\right)=0.\end{eqnarray}$
From equations (13) and (18) we obtain
$\begin{eqnarray}\begin{array}{rcl}{A}_{0} & = & 0,\mp \displaystyle \frac{\sqrt{-{b}_{1}+\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}}}{\sqrt{2{b}_{2}}},\\ & & \mp \displaystyle \frac{\sqrt{-{b}_{1}-\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}}}{\sqrt{2{b}_{2}}},\end{array}\end{eqnarray}$
and
$\begin{eqnarray}{A}_{1}=\mp \displaystyle \frac{\sqrt{-6{b}_{3}}}{\sqrt{{b}_{2}}}\end{eqnarray}$
provided that ${b}_{2}\ne 0$.
From equations (14) and (17) we get
$\begin{eqnarray}\begin{array}{rcl}\psi ^{\prime} & = & \displaystyle \frac{2{A}_{1}{b}_{3}}{{A}_{0}\left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)}\\ \psi ^{\prime\prime} & = & \displaystyle \frac{2{{MA}}_{0}^{2}{b}_{3}+2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}+M{\rho }_{1}}{M\left(-5{A}_{0}^{4}{b}_{2}+{\rho }_{1}{k}^{2}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right)}\psi \prime\prime\prime ,\end{array}\end{eqnarray}$
so that
$\begin{eqnarray}\displaystyle \frac{\psi \prime\prime\prime }{\psi ^{\prime\prime} }=\displaystyle \frac{2M\left(-5{A}_{0}^{4}{b}_{2}+{\rho }_{1}{k}^{2}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right){A}_{1}{b}_{3}}{\left(2{{MA}}_{0}^{2}{b}_{3}+2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}+M{\rho }_{1}\right){A}_{0}\left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)}.\end{eqnarray}$
Integrating equation (22) with respect to η gives
$\begin{eqnarray}\begin{array}{l}\psi ^{\prime\prime} (\eta )={c}_{1}\\ \times \exp \left(\displaystyle \frac{2M\left(-5{A}_{0}^{4}{b}_{2}+{\rho }_{1}{k}^{2}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right){A}_{1}{b}_{3}}{\left(2{{MA}}_{0}^{2}{b}_{3}+2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}+M{\rho }_{1}\right){A}_{0}\left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)}\right).\end{array}\end{eqnarray}$
By using equation (21), we obtain
$\begin{eqnarray}\begin{array}{l}\psi ^{\prime} (\eta )=\displaystyle \frac{2{A}_{1}{b}_{3}}{{A}_{0}\left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)}\times {c}_{1}\\ \times \exp \left(\displaystyle \frac{2M\left(-5{A}_{0}^{4}{b}_{2}+{\rho }_{1}{k}^{2}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right){A}_{1}{b}_{3}}{\left(2{{MA}}_{0}^{2}{b}_{3}+2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}+M{\rho }_{1}\right){A}_{0}\left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)}\right).\end{array}\end{eqnarray}$
Integrating equation (24) gives
$\begin{eqnarray}\begin{array}{l}\psi (\eta )={c}_{2}+\displaystyle \frac{2{{MA}}_{0}^{2}{b}_{3}+\left(2k{\rho }_{2}+M\right){\rho }_{1}-\omega {\rho }_{2}^{2}}{M\left(-5{A}_{0}^{4}{b}_{2}+{\rho }_{1}{k}^{2}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right)}\\ \times {c}_{1}\exp \left(\displaystyle \frac{2M\left(-5{A}_{0}^{4}{b}_{2}+{\rho }_{1}{k}^{2}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right){A}_{1}{b}_{3}}{\left(2{{MA}}_{0}^{2}{b}_{3}+2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}+M{\rho }_{1}\right){A}_{0}\left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)}\right).\end{array}\,\end{eqnarray}$
Accordingly, we have the following cases:
Case 1. If A0 = 0 and ${A}_{1}=\mp \tfrac{\sqrt{-6{b}_{3}}}{\sqrt{{b}_{2}}}$. We obtain a trivial solution. Hence, this case is refused.
Case 2. If ${A}_{0}=\mp \tfrac{\sqrt{-{b}_{1}+\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}}}{\sqrt{2{b}_{2}}}$ and ${A}_{1}=\mp \tfrac{\sqrt{-6{b}_{3}}}{\sqrt{{b}_{2}}}$. Substituting the values of ${A}_{0},{A}_{1},\psi (\eta )$ and $\psi ^{\prime} (\eta )$ into equation (10), the exact solution of equation (9) is as follows:
$\begin{eqnarray}\begin{array}{rcl}P(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}+\delta }}{\sqrt{2{b}_{2}}}\pm \displaystyle \frac{3\sqrt{2}{b}_{3}{c}_{1}}{\sqrt{{b}_{2}(-{b}_{1}+\delta )}}\\ & & \times \exp \left(\pm \displaystyle \frac{\delta \,\sqrt{-3\,{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{M\left(-{b}_{1}+\delta \right){b}_{3}+\lambda \,{b}_{2}}\right)\\ & & \times \left({c}_{2}+\displaystyle \frac{\left(\lambda \,{b}_{2}+\left(-{b}_{1}+\delta \right){b}_{3}M\right){c}_{1}}{\left({b}_{1}\delta -{\delta }^{2}\right)M}\right.\\ & & {\left.\times \exp \left(\pm \displaystyle \frac{\delta \sqrt{-3{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{M\left(-{b}_{1}+\delta \right){b}_{3}+\lambda {b}_{2}}\right)\right)}^{-1},\end{array}\end{eqnarray}$
where $\delta =\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}$ and $\lambda \,=2\,k{\rho }_{1}{\rho }_{2}-\omega \,{\rho }_{2}^{2}+M{\rho }_{1}$.
The parameters c1 and c2 could be randomly chosen. By setting ${c}_{2}=\tfrac{\lambda \,{b}_{2}+\left(-{b}_{1}+\delta \right){b}_{3}M}{\left({b}_{1}\delta -{\delta }^{2}\right)M}{c}_{1}$, we obtain
$\begin{eqnarray}\begin{array}{rcl}{P}_{1}(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}+\delta }}{\sqrt{2{b}_{2}}}-\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}+2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}+\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \times \left(1\pm \tanh \left(\displaystyle \frac{\delta \,\sqrt{-3\,{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{2M\left(-{b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}+{\eta }_{0}\right)\right),\end{array}\end{eqnarray}$
where η0 is an arbitrary constant. Accordingly, we have the following dark 1-soliton solution:
$\begin{eqnarray}\begin{array}{l}q(x,t)=\left\{\mp \displaystyle \frac{\sqrt{-{b}_{1}+\delta }}{\sqrt{2{b}_{2}}}\right.\\ \,-\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}+2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}+\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ \left.\,\times \left(1\pm \tanh \left(\displaystyle \frac{\delta \,\sqrt{-3\,{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{2M\left(-{b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}+{\eta }_{0}\right)\right)\right\}\\ \,\times {{\rm{e}}}^{{\rm{i}}\left(-\kappa x+\omega t+{\theta }_{0}\right)}.\end{array}\end{eqnarray}$
Similarly, by setting ${c}_{2}=-\tfrac{\lambda \,{b}_{2}+\left(-{b}_{1}+\delta \right){b}_{3}M}{\left({b}_{1}\delta -{\delta }^{2}\right)M}{c}_{1}$, we obtain
$\begin{eqnarray}\begin{array}{rcl}{P}_{2}(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}+\delta }}{\sqrt{2{b}_{2}}}-\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}+2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}+\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \times \left(1\pm \coth \left(\displaystyle \frac{\delta \,\sqrt{-3\,{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{2M\left(-{b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}+{\eta }_{0}\right)\right),\end{array}\end{eqnarray}$
where η0 is an arbitrary constant. Therefore, we obtain the following singular 1-soliton solution:
$\begin{eqnarray}\begin{array}{l}q(x,t)=\left\{\mp \displaystyle \frac{\sqrt{-{b}_{1}+\delta }}{\sqrt{2{b}_{2}}}\right.\\ \,-\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}+2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}+\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ \left.\,\times \left(1\pm \coth \left(\displaystyle \frac{\delta \,\sqrt{-3\,{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{2M\left(-{b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}+{\eta }_{0}\right)\right)\right\}\\ \,\times {{\rm{e}}}^{{\rm{i}}\left(-\kappa x+\omega t+{\theta }_{0}\right)}.\end{array}\end{eqnarray}$
Case 3. If ${A}_{0}=\pm \tfrac{\sqrt{-{b}_{1}-\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}}}{\sqrt{2{b}_{2}}}$ and ${A}_{1}=\mp \tfrac{\sqrt{-6{b}_{3}}}{\sqrt{{b}_{2}}}$. Substituting the values of ${A}_{0},{A}_{1},\psi (\eta )$ and $\psi ^{\prime} (\eta )$ into equation (10), the exact solution of equation (9) is as follows:
$\begin{eqnarray}\begin{array}{rcl}P(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}-\delta }}{\sqrt{2{b}_{2}}}\pm \displaystyle \frac{3\sqrt{2}{b}_{3}{c}_{1}}{\sqrt{-{b}_{2}({b}_{1}+\delta )}}\\ & & \times \exp \left(\pm \displaystyle \frac{\delta \,\sqrt{3\,{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-M\left({b}_{1}+\delta \right){b}_{3}+\lambda \,{b}_{2}}\right)\\ & & \times \left({c}_{2}+\displaystyle \frac{\left(\lambda \,{b}_{2}-\left({b}_{1}+\delta \right){b}_{3}M\right){c}_{1}}{-\left({b}_{1}\delta +{\delta }^{2}\right)M}\right.\\ & & {\left.\times \exp \left(\pm \displaystyle \frac{\delta \sqrt{3{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-M\left({b}_{1}+\delta \right){b}_{3}+\lambda {b}_{2}}\right)\right)}^{-1},\end{array}\end{eqnarray}$
where $\delta =\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}$ and $\lambda =2\,k{\rho }_{1}{\rho }_{2}\,-\omega \,{\rho }_{2}^{2}+M{\rho }_{1}$.
The parameters c1 and c2 could be randomly chosen. By setting ${c}_{2}=\tfrac{\lambda \,{b}_{2}-\left({b}_{1}+\delta \right){b}_{3}M}{-\left({b}_{1}\delta +{\delta }^{2}\right)M}{c}_{1}$, we obtain
$\begin{eqnarray}\begin{array}{rcl}{P}_{1}(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}-\delta }}{\sqrt{2{b}_{2}}}+\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}-2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}-\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \times \left(1\pm \tanh \left(\displaystyle \frac{\delta \,\sqrt{3\,{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-2M\left({b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}\right)\right),\end{array}\end{eqnarray}$
where η0 is an arbitrary constant. Accordingly, we have the following dark 1-soliton solution:
$\begin{eqnarray}\begin{array}{rcl}q(x,t) & = & \left\{\mp \displaystyle \frac{\sqrt{-{b}_{1}-\delta }}{\sqrt{2{b}_{2}}}\right.\\ & & +\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}-2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}-\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \left.\times \left(1\pm \tanh \left(\displaystyle \frac{\delta \,\sqrt{3\,{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-2M\left({b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}\right)\right)\right\}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left(-\kappa x+\omega t+{\theta }_{0}\right)}.\end{array}\end{eqnarray}$
Similarly, by setting ${c}_{2}=-\tfrac{\lambda \,{b}_{2}-\left({b}_{1}+\delta \right){b}_{3}M}{-\left({b}_{1}\delta +{\delta }^{2}\right)M}{c}_{1}$, we obtain
$\begin{eqnarray}\begin{array}{rcl}{P}_{2}(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}-\delta }}{\sqrt{2{b}_{2}}}+\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}-2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}-\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \times \left(1\pm \coth \left(\displaystyle \frac{\delta \,\sqrt{3\,{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-2M\left({b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}\right)\right),\end{array}\end{eqnarray}$
where η0 is an arbitrary constant. Therefore, we obtain the following singular 1-soliton solution:
$\begin{eqnarray}\begin{array}{rcl}q(x,t) & = & \left\{\mp \displaystyle \frac{\sqrt{-{b}_{1}-\delta }}{\sqrt{2{b}_{2}}}\right.\\ & & +\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}-2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}-\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \left.\times \left(1\pm \coth \left(\displaystyle \frac{\delta \,\sqrt{3\,{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-2M\left({b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}\right)\right)\right\}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left(-\kappa x+\omega t+{\theta }_{0}\right)}.\end{array}\end{eqnarray}$
Note that the wave variable is $\eta =x-\left(\tfrac{{\rho }_{2}\omega -2{\rho }_{1}\kappa }{1-{\rho }_{2}\kappa }\right)t$ in all the above analytical solutions from cases 2 and 3.

3. Some graphical illustrations

In this section, we give some graphical illustrations of the acquired solutions of our equations with the aid of Mathematica. The two-dimensional and three-dimensional plots of certain solutions are presented in figures 1–4.

4. Results and discussion

One of the most powerful integration schemes has been used in this article to construct some new dark and singular 1-soliton solutions of the nonlocal nonlinear Schrödinger equation (NNLSE) with competing weakly nonlocal nonlinearity and parabolic law nonlinearity. By comparing our outcomes with those obtained by some existing methods in the previous literature [13], one can observe that this approach has successfully constructed new complex wave solutions that have not been accounted for earlier. All of these solutions are verified by direct substitution via the commercial software Mathematica. The geometrical shapes (numerical simulations) for certain solutions are depicted in figures 14 at particular values of the free parameters; they help us to understand the complex physical phenomena of the dynamical model under consideration. Numerical solvers can count on the constructed solutions to validate their solutions as well as to study the stability analysis. The N1-soliton solutions (28), (30), (33) and (35) signify solitary waves that maintain their identity upon interaction. Figures 1 and 2 elaborate both cases of the dark 1-soliton solutions (28) in two- and three-dimensional shapes by taking some suitable choices of the parameters. In figure 3, the graphical shapes of the singular 1-soliton solution (30) are shown in two and three dimensions at specific values of the parameters. The dark 1-soliton solution (33) is depicted in figure 4 in two- and three-dimensional shapes by taking suitable values of the free parameters.
Figure 1. Graph of case 2 for (28) at b2 = 1, δ = 1, κ = 0.2, λ = 0.1, b1 = 0.1, ν = 0.1, θ0 = 5, M = 0.2, ω = 0.1, b3 = 0.2.
Figure 2. Graph of case 2 for (30) at b2 = 1, δ = 1, κ = 0.2, λ = 0.1, b1 = 0.1, ν = 0.1, θ0 = 5, M = 0.2, ω = 0.1, b3 = 0.2.
Figure 3. Graph of case 3 for (33) at b2 = 1, δ = 1, κ = 0.2, λ = 0.1, b1 = 0.1, ν = 0.1, θ0 = 5, M = 0.2, ω = 0.1, b3 = 0.2.
Figure 4. Graph of case 3 for (35) at b2 = 2, δ = 0.1, κ = 0.1, λ = 0.01, b1 = 0.1, ν = 0.1, θ0 = 0.5, M = 0.1, ω = 0.1, b3 = 0.2.

5. Conclusions

In this work, the NNLSE with competing weakly nonlocal nonlinearity and parabolic law nonlinearity is studied using the modified simple equation method. It should be noted that all the obtained solutions in the current work are dark and singular 1-soliton solutions. This strong integration approach is very effective when other schemes fail to find soliton solutions. Thus, this methodology will be studied in future for various other situations in various types of NNLSEs.
1
Wang G Mirzazadeh M Yao M Zhou Q 2016 Optical solitons under competing weakly nonlocal nonlinearity and cubic–quintic nonlinearities Optoelectron. Adv. Mater. Rapid Commun. 10 807 810

2
Mirzazadeh M Eslami M Savescu M Bhrawy A H Alshaery A A Hilal E M Biswas A 2015 Optical solitons in DWDM system with spatio-temporal dispersion J. Nonlinear Opt. Phys. Mater. 24 1550006

DOI

3
Zhou Q Liu L Zhang H Mirzazadeh M Bhrawy A H Zerrad E Moshokoa S Biswas A 2016 Dark and singular optical solitons with competing nonlocal nonlinearities Opt. Appl. 46 79 86

DOI

4
Yang C Zhou Q Triki H Mirzazadeh M Ekici M Liu W J Biswas A Belic M 2019 Bright soliton interactions in a (2+1) -dimensional fourth-order variable-coefficient nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chain Nonlinear Dyn. 95 983 994

DOI

5
Rezazadeh H Seadawy A R Eslami M Mirzazadeh M 2019 Generalized solitary wave solutions to the time fractional generalized Hirota–Satsuma coupled KdV via new definition for wave transformation J. Ocean Eng. Sci. 4 77 84

DOI

6
Hosseini K Osman M S Mirzazadeh M Rabiei F 2020 Investigation of different wave structures to the generalized third-order nonlinear Schrödinger equation Optik 206 164259

DOI

7
Liu X Triki H Zhou Q Mirzazadeh M Liu W Biswas A Belic M 2019 Generation and control of multiple solitons under the influence of parameters Nonlinear Dyn. 95 143 150

DOI

8
Liu S Zhou Q Biswas A Liu W 2019 Phase-shift controlling of three solitons in dispersion-decreasing fibers Nonlinear Dyn. 98 395 401

DOI

9
Liu W Zhang Y Wazwaz A M Zhou Q 2019 Analytic study on triple-S, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber Appl. Math. Comput. 361 325 331

DOI

10
Guan X Liu W Zhou Q Biswas A 2020 Some lump solutions for a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation Appl. Math. Comput. 366 124757

DOI

11
Yan Y Liu W 2019 Stable transmission of solitons in the complex cubic–quintic Ginzburg–Landau equation with nonlinear gain and higher-order effects Appl. Math. Lett. 98 171 176

DOI

12
Attia R A Lu D Ak T Khater M M 2020 Optical wave solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term via modified Khater method Mod. Phys. Lett. B 34 2050044

DOI

13
Khater M M Attia R A Abdel-Aty A H Abdou M A Eleuch H Lu D 2020 Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term Results Phys. 16 103000

DOI

14
Qian L Attia R A Qiu Y Lu D Khater M M 2019 The shock peakon wave solutions of the general Degasperis–Procesi equation Int. J. Mod. Phys. B 33 1950351

DOI

15
Rezazadeh H Korkmaz A Khater M M Eslami M Lu D Attia R A 2019 New exact traveling wave solutions of biological population model via the extended rational sinh-cosh method and the modified Khater method Mod. Phys. Lett. B 33 1950338

DOI

16
Sulaiman T A 2020 Three-component coupled nonlinear Schrödinger equation: optical soliton and modulation instability analysis Phys. Scr. 95 065201

DOI

17
Sulaiman T A Bulut H 2020 Optical solitons and modulation instability analysis of the (1+1)-dimensional coupled nonlinear Schrödinger equation Commun. Theor. Phys. 72 025003

DOI

18
Sulaiman T A Bulut H Yokus A Baskonus H M 2019 On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering Indian J. Phys. 93 647 656

DOI

19
Yokus A Sulaiman T A Bulut H 2018 On the analytical and numerical solutions of the Benjamin–Bona–Mahony equation Opt. Quantum Electron. 50 31

DOI

20
Yokus A Sulaiman T A Baskonus H M Atmaca S P 2018 On the exact and numerical solutions to a nonlinear model arising in mathematical biology ITM Web of Conferences 22 01061

DOI

21
Kaya D Gülbahar S Yokuş A Gülbahar M 2018 Solutions of the fractional combined KdV-mKdV equation with collocation method using radial basis function and their geometrical obstructions Adv. Differ. Equ. 2018 77

DOI

22
Ali K K Rezazadeh H Talarposhti R A Bekir A 2020 New soliton solutions for resonant nonlinear Schrödinger's equation having full nonlinearity Int. J. Mod. Phys. B 34 2050032

DOI

23
Seadawy A R Ali K K Nuruddeen R I 2019 A variety of soliton solutions for the fractional Wazwaz–Benjamin–Bona–Mahony equations Results Phys. 12 2234 2241

DOI

24
Ali K K Nuruddeen R I Hadhoud A R 2018 New exact solitary wave solutions for the extended (3.1)-dimensional Jimbo–Miwa equations Results Phys. 9 12 16

DOI

25
Souleymanou A Ali K K Rezazadeh H Eslami M Mirzazadeh M Korkmaz A 2019 The propagation of waves in thin-film ferroelectric materials Pramana 93 27

DOI

26
Miah M M Ali H S Akbar M A Seadawy A R 2019 New applications of the two variable (G’/G, 1/G)-expansion method for closed form traveling wave solutions of integro-differential equations J. Ocean Eng. Sci. 4 132 143

DOI

27
Miah M M Seadawy A R Ali H S Akbar M A 2019 Further investigations to extract abundant new exact traveling wave solutions of some NLEEs J. Ocean Eng. Sci. 4 387 394

DOI

28
Miah M M Ali H S Akbar M A Wazwaz A M 2017 Some applications of the (G’/G, 1/G)-expansion method to find new exact solutions of NLEEs Eur. Phys. J. Plus 132 252

DOI

29
Habib M A Ali H S Miah M M Akbar M A 2019 The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs AIMS Math. 4 896

DOI

30
Rezazadeh H Korkmaz A Eslami M Mirhosseini-Alizamini S M 2019 A large family of optical solutions to Kundu–Eckhaus model by a new auxiliary equation method Opt. Quantum Electron. 51 84

DOI

31
Raza N Aslam M R Rezazadeh H 2019 Analytical study of resonant optical solitons with variable coefficients in Kerr and non-Kerr law media Opt. Quantum Electron. 51 59

DOI

32
Shehata M S Rezazadeh H Zahran E H Tala-Tebue E Bekir A 2019 New optical soliton solutions of the perturbed Fokas–Lenells equation Commun. Theor. Phys. 71 1275

DOI

33
Malfliet W Hereman W 1996 The tanh method: I. Exact solutions of nonlinear evolution and wave equations Phys. Scr. 54 563

DOI

34
Fan E 2000 Extended tanh-function method and its applications to nonlinear equations Phys. Lett. A 277 212 218

DOI

35
Fan E Hona Y C 2002 Generalized tanh method extended to special types of nonlinear equations Z. Naturforsch. A 57 692 700

DOI

36
Raslan K R El-Danaf T S Ali K K 2017 Exact solution of the space-time fractional coupled EW and coupled MEW equations Eur. Phys. J. Plus 132 319

DOI

37
Korkmaz A 2017 Exact solutions to (3 + 1) conformable time fractional Jimbo–Miwa, Zakharov–Kuznetsov and modified Zakharov–Kuznetsov equations Commun. Theor. Phys. 67 479

DOI

38
Korkmaz A Hosseini K 2017 Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods Opt. Quantum Electron. 49 278

DOI

39
Zheng B 2015 Exact solutions for fractional partial differential equations by projective Riccati equation method UPB Sci. Bull. Ser. A 77 99 108

40
Yong C Biao L 2004 New exact travelling wave solutions for generalized zakharov-kuzentsov equations using general projective riccati equation method Commun. Theor. Phys. 41 1

DOI

41
Hafez M G Alam M N Akbar M A 2014 Exact traveling wave solutions to the Klein–Gordon equation using the novel (G’/G)-expansion method Results Phys. 4 177 184

DOI

42
Lu D Seadawy A R Khater M M 2018 Structure of solitary wave solutions of the nonlinear complex fractional generalized Zakharov dynamical system Adv. Differ. Equ. 2018 266

DOI

43
Seadawy A R Lu D Khater M M 2017 New wave solutions for the fractional-order biological population model, time fractional burgers, Drinfel’d–Sokolov–Wilson and system of shallow water wave equations and their applications Eur. J. Comput. Mech. 26 508 524

DOI

44
Al-Amr M O El-Ganaini S 2017 New exact traveling wave solutions of the (4.1)-dimensional Fokas equation Comput. Math. Appl. 74 1274 1287

DOI

45
Akter J Akbar M A 2015 Exact solutions to the Benney–Luke equation and the Phi-4 equations by using modified simple equation method Results Phys. 5 125 130

DOI

46
Al-Amr M O 2015 Exact solutions of the generalized (2+1)-dimensional nonlinear evolution equations via the modified simple equation method Comput. Math. Appl. 69 390 397

DOI

47
El-Ganaini S Al-Amr M O 2019 New abundant wave solutions of the conformable space-time fractional (4+1)-dimensional Fokas equation in water waves Comput. Math. Appl. 78 2094 2106

DOI

Outlines

/