Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and SIVP schemes arising in fluid mechanics

  • Jalil Manafian , 1, 6 ,
  • Onur Alp Ilhan , 2 ,
  • As’ad Alizadeh , 3, 4 ,
  • Sizar Abid Mohammed , 5
Expand
  • 1Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
  • 2Department of Mathematics, Faculty of Education, Erciyes University, 38039-Melikgazi-Kayseri, Turkey
  • 3Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran
  • 4Department of Mechanical Engineering, College of Engineering, University of Zakho, Zakho, Iraq
  • 5Department of Mathematics, College of Basic Education, University of Duhok, Zakho Street 38, 1006 AJ Duhok, Iraq

6Author to whom any correspondence should be addressed.

Received date: 2019-12-22

  Revised date: 2020-03-13

  Accepted date: 2020-03-13

  Online published: 2020-07-14

Copyright

© 2020 Chinese Physical Society and IOP Publishing Ltd

Abstract

The multiple lump solutions method is employed for the purpose of obtaining multiple soliton solutions for the generalized Bogoyavlensky–Konopelchenko (BK) equation. The solutions obtained contain first-order, second-order, and third-order wave solutions. At the critical point, the second-order derivative and Hessian matrix for only one point is investigated, and the lump solution has one maximum value. He’s semi-inverse variational principle (SIVP) is also used for the generalized BK equation. Three major cases are studied, based on two different ansatzes using the SIVP. The physical phenomena of the multiple soliton solutions thus obtained are then analyzed and demonstrated in the figures below, using a selection of suitable parameter values. This method should prove extremely useful for further studies of attractive physical phenomena in the fields of heat transfer, fluid dynamics, etc.

Cite this article

Jalil Manafian , Onur Alp Ilhan , As’ad Alizadeh , Sizar Abid Mohammed . Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and SIVP schemes arising in fluid mechanics[J]. Communications in Theoretical Physics, 2020 , 72(7) : 075002 . DOI: 10.1088/1572-9494/ab8a13

1. Introduction

As we know, the model of many natural phenomena and differential equations in science and engineering are nonlinear, and it is very important to obtain analytically or numerically accurate solutions. In order to achieve this goal, various methods have been developed for linear and nonlinear equations such as: the Exp-function method [1], the homotopy analysis method [2], the homotopy perturbation method [3], the (G’/G)-expansion method [4], the improved $\tan (\phi /2)$-expansion method [5, 6], Hirota’s bilinear method [719], He’s variational principle [20, 21], the binary Darboux transformation [22], the Lie group analysis [23, 24], the Bäcklund transformation method [25], and the multiple Exp-function method [26, 27]. Moreover, many powerful methods have been used to investigate the new properties of mathematical models symbolizing serious real world problems [2830].
Bogoyavlenski introduced a model equation to describe nonisospectral scattering problems [31], specifically the (2+1)-dimensional Bogoyavlenski equation:
$ \begin{eqnarray}4{{\rm{\Psi }}}_{t}+{{\rm{\Psi }}}_{{xxy}}-4{{\rm{\Psi }}}^{2}{{\rm{\Psi }}}_{y}-4{{\rm{\Psi }}}_{x}{\rm{\Phi }}=0,\end{eqnarray}$

$ \begin{eqnarray*}{\rm{\Psi }}{{\rm{\Psi }}}_{y}={{\rm{\Phi }}}_{x}.\end{eqnarray*}$
Kudryashov and Pickering [32] proposed the above equation as a member of a (2 + 1) Schwarzian breaking soliton hierarchy. Clarkson and co-authors [33] investigated equation (1.1) as part of a group of equations associated with nonisospectral scattering problems. Estevez and Prada [34] presented a generalization of the sine-Gordon equation possessing the Painleve feature. Zhran and Khater [35] examined the Bogoyavlenskii equation utilizing the modified extended tanh-function method. The authors of [36] showed that the above equation is an as-modified version of the following nonlinear equation:
$ \begin{eqnarray}4{{\rm{\Psi }}}_{{xt}}+8{{\rm{\Psi }}}_{x}{{\rm{\Psi }}}_{{xy}}+4{{\rm{\Psi }}}_{y}{{\rm{\Psi }}}_{{xx}}+{{\rm{\Psi }}}_{{xxxy}}=0,\end{eqnarray}$
this is known as the breaking soliton equation. Equation (1.2) is also a specific version of a form of Bogoyavlensky–Konopelchenko (BK) equation, given as
$ \begin{eqnarray}\begin{array}{l}a{{\rm{\Psi }}}_{{xt}}+b{{\rm{\Psi }}}_{{xxxx}}+c{{\rm{\Psi }}}_{{xxy}}+d{{\rm{\Psi }}}_{x}{{\rm{\Psi }}}_{{xx}}\\ \qquad +\,e{{\rm{\Psi }}}_{x}{{\rm{\Psi }}}_{{xy}}+k{{\rm{\Psi }}}_{{xx}}{{\rm{\Psi }}}_{y}=0.\end{array}\end{eqnarray}$
The BK equation defines the (2+1)-dimensional interaction of a Riemann wave propagation along the y-axis with a long wave along the x-axis, and is also a two-dimensional generalization of the well known Korteweg-de Vries equation [37, 38]. This study is aimed at investigating the following generalized BK equation [39]:
$ \begin{eqnarray}\begin{array}{l}{{\rm{\Psi }}}_{t}+\alpha (6{\rm{\Psi }}{{\rm{\Psi }}}_{x}+{{\rm{\Psi }}}_{{xxx}})+\beta ({{\rm{\Psi }}}_{{xxy}}+3{\rm{\Psi }}{{\rm{\Psi }}}_{y}+3{{\rm{\Psi }}}_{x}{{\rm{\Phi }}}_{y})\\ \,+\,{\gamma }_{1}{{\rm{\Psi }}}_{x}+{\gamma }_{2}{{\rm{\Psi }}}_{y}+{\gamma }_{3}{{\rm{\Phi }}}_{{yy}}=0,\end{array}\end{eqnarray}$
in which Φx = ψ, and α, β, γ1, γ2, and γ3 are determined values. Equation (1.4) can be written as
$ \begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{{xt}}+\alpha (6{{\rm{\Phi }}}_{x}{{\rm{\Phi }}}_{{xx}}+{{\rm{\Phi }}}_{{xxxx}})+\beta ({{\rm{\Phi }}}_{{xxxy}}+3{{\rm{\Phi }}}_{x}{{\rm{\Phi }}}_{{xy}}+3{{\rm{\Phi }}}_{{xx}}{{\rm{\Phi }}}_{{xy}})\\ \,+\,{\gamma }_{1}{{\rm{\Phi }}}_{{xx}}+{\gamma }_{2}{{\rm{\Phi }}}_{{xy}}+{\gamma }_{3}{{\rm{\Phi }}}_{{yy}}=0,\end{array}\end{eqnarray}$
by applying the bilinear transformation ${\rm{\Psi }}=2{(\mathrm{ln}f)}_{{xx}}$ and ${\rm{\Phi }}=2{(\mathrm{ln}f)}_{x}$, the equation (1.5) transforms to the bilinear form as follows:
$ \begin{eqnarray}\begin{array}{l}\left(\alpha {D}_{x}^{4}+\beta {D}_{x}^{3}{D}_{y}+{D}_{t}{D}_{x}+{\gamma }_{1}{D}_{x}^{2}\right.\\ \,\left.+\,{\gamma }_{2}{D}_{x}{D}_{y}+{\gamma }_{3}{D}_{y}^{2}\right){\mathfrak{f}}.{\mathfrak{f}}=0,\end{array}\end{eqnarray}$

$ \begin{eqnarray*}\begin{array}{l}{D}_{x}^{4}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xxxx}}-4{{\mathfrak{f}}}_{x}{{\mathfrak{f}}}_{{xxx}}+3{{\mathfrak{f}}}_{{xx}}^{2}),\\ {D}_{x}^{3}{D}_{y}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xxxy}}-{{\mathfrak{f}}}_{y}{{\mathfrak{f}}}_{{xxx}}-3{{\mathfrak{f}}}_{x}{{\mathfrak{f}}}_{{xxy}}+3{{\mathfrak{f}}}_{{xx}}{{\mathfrak{f}}}_{{xy}}),\end{array}\end{eqnarray*}$

$ \begin{eqnarray*}\begin{array}{l}{D}_{x}^{2}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xx}}-{{\mathfrak{f}}}_{x}^{2}),\ \ \ {D}_{x}{D}_{t}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xt}}-{{\mathfrak{f}}}_{x}{{\mathfrak{f}}}_{t}),\\ {D}_{x}{D}_{y}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xy}}-{{\mathfrak{f}}}_{x}{{\mathfrak{f}}}_{y}),\ \ {D}_{y}^{2}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{yy}}-{{\mathfrak{f}}}_{y}^{2}).\end{array}\end{eqnarray*}$

Various research models already exist relating to lump solutions for the (2+1)-dimensional nonlinear equation. Liu and co-workers employed the Hirota bilinear method to obtain an N-soliton solution for the (3+1)-dimensional generalized KP equation [40]. The same group also constructed an N-soliton solution for the(2+1)-dimensional generalized Hirota-Satsuma-Ito equation [41]. Localized nonlinear matter waves in two-component Bose-Einstein condensates with time- and space-modulated nonlinearities [42], and in a rotating Bose-Einstein condensate with spatiotemporally modulated interaction [43] have been investigated both analytically and numerically. With regard to the integrable coupled nonlinear Schrödinger system, N-soliton solutions within this system were obtained, and the collision dynamics between two solitons was also analyzed via the Riemann-Hilbert method by Wang and co-authors in [44].
Currently, nonlinear differential equations represent a significant opportunity for researchers to define tangible incidents. This has driven mathematicians and scientists to examine a wide variety of soliton solutions. As a result, in the past few years a growing number of effective and realistic methods have been initiated and dilated to extract closed form solutions to NLDEs. Among these, the semi-inverse principle method is one of the more powerful methods to be examined, in studies relating to the buckling analysis of circular cylinders [45], one-dimensional compressible flow in a microgravity space [46], the generalized KdV-Burgers equation with fractal derivatives [47], and the thin film equation [48]. In addition, it would be beneficial to researchers to consider recent studies on the variational approach to nonlinear oscillators, as investigated by authors such as Liu [49], Nawaz, and co-workers [50], He [51, 52], and Kovacic, Rakaric, and Cveticanin [53]. Finally, any review of the above methods should include two-scale fractal calculus, a hot topic in mathematics and physics, as demonstrated in the valuable works [54, 55].
In this paper, we will study the multiple lump soliton to determine multiple soliton solutions. The multiple lump method has been utilized by researchers for a variety of applications requiring nonlinear equations, including: the construction of rogue waves with a controllable center in nonlinear systems [56], the (3+1)-dimensional Hirota bilinear equation [57], the generalized (3+1)-dimensional KP equation [58], and the Boussinesq equation [59].
The remainder of this paper is structured as follows: the multiple lump scheme is summarized in section 2. In section 3, the generalized BK equation is used to investigate first-order, second-order, and third-order wave solutions. SIVP will also be examined in section 4. In the last section, the conclusions are presented.

2. Multiple lump solution method

This section elucidates a systematic explanation of the multiple lump soliton solution [5658] so that it can be further applied to nonlinear PDEs in order to furnish exact solutions:
Step 1. Take the following NLPDE
$ \begin{eqnarray}{ \mathcal N }(x,y,t,{\rm{\Psi }},{{\rm{\Psi }}}_{x},{{\rm{\Psi }}}_{y},{{\rm{\Psi }}}_{t},{{\rm{\Psi }}}_{{xx}},{{\rm{\Psi }}}_{{xy}},{{\rm{\Psi }}}_{{tt}},\ldots )=0.\end{eqnarray}$
We commence a Painlevè analysis, using the following transformation
$ \begin{eqnarray}{\rm{\Psi }}={\mathfrak{T}}(f),\end{eqnarray}$
based on the dependant variable function f.
Step 2. By means of transformation (2.2), the nonlinear equation (2.1) can be written in terms of the following Hirota’s bilinear form:
$ \begin{eqnarray}{\mathfrak{G}}({D}_{\xi },{D}_{y};f)=0,\end{eqnarray}$
where $\xi =x-{ct}$ and c is a real parameter. Moreover, the D-operator [22] is given as follows:
$ \begin{eqnarray}\prod _{i=1}^{2}{D}_{{\jmath}_{i}}^{{\beta }_{i}}f.g={\left.\prod _{i=1}^{2}{\left(\displaystyle \frac{\partial }{\partial {\jmath}_{i}}-\displaystyle \frac{\partial }{\partial {\jmath}_{i}^{{\prime} }}\right)}^{{\beta }_{i}}f(\jmath)g(\jmath^{\prime} )\right|}_{\jmath^{\prime} =\jmath},\end{eqnarray}$
where the vectors $\jmath=({\jmath}_{1},{\jmath}_{2},{\jmath}_{3})=(x,y,t)$, $\jmath^{\prime} =({\jmath}_{1}^{{\prime} },{\jmath}_{2}^{{\prime} },{\jmath}_{3}^{{\prime} })=(x^{\prime} ,y^{\prime} ,t^{\prime} )$, and β1, β2, β3 are arbitrary nonnegative integers.
Step 3. Let
$ \begin{eqnarray}\begin{array}{rcl}{\mathfrak{f}} & = & {\mathfrak{f}}(\xi ,y;\theta ,\delta )\\ & = & {\chi }_{n+1}(\xi ,y)+2\delta {{yp}}_{n}(\xi ,y)\\ & & +2\delta \xi {s}_{n}(\xi ,y)+({\theta }^{2}+{\delta }^{2}){\chi }_{n-1}(\xi ,y),\end{array}\end{eqnarray}$
with
$ \begin{eqnarray}{\chi }_{n}(\xi ,y)=\sum _{k=0}^{\tfrac{n(n+1)}{2}}\sum _{i=0}^{k}{a}_{n(n+1)-2k,2i}{y}^{2i}{\xi }^{n(n+1)-2k},\,\end{eqnarray}$

$ \begin{eqnarray*}{p}_{n}(\xi ,y)=\sum _{k=0}^{\tfrac{n(n+1)}{2}}\sum _{i=0}^{k}{b}_{n(n+1)-2k,2i}{y}^{2i}{\xi }^{n(n+1)-2k},\,\end{eqnarray*}$

$ \begin{eqnarray*}{s}_{n}(\xi ,y)=\sum _{k=0}^{\tfrac{n(n+1)}{2}}\sum _{i=0}^{k}{c}_{n(n+1)-2k,2i}{y}^{2i}{\xi }^{n(n+1)-2k},\,\end{eqnarray*}$
${\chi }_{0}=1,{\chi }_{1}={p}_{0}={s}_{0}=0$,
where ${a}_{m,l},{b}_{m,l},{c}_{m,l}(m,l\,\in \{0,2,4,...,n(n+1)\})$ and θ, δ are real values. The coefficients ${a}_{m,l},{b}_{m,l},{c}_{m,l}$ can be found, and special values θ, δ are utilized to control the wave center.
Step 4. By inserting (2.6) into (2.5) and setting all the coefficients of the diverse powers of ${y}^{m}{\xi }^{m}$ to zero, we obtain a system of nonlinear algebra equations. Using the symbolic computation system Maple or Mathematica, solving the system gained above leads to the values of ${a}_{m,l},{b}_{m,l},{c}_{m,l}(m,l\in \{0,2,4,...,n(n+1)\})$.
Step 5. Plugging the values of ${a}_{m,l},{b}_{m,l},{c}_{m,l}(m,l\,\in \{0,2,4,...,n(n+1)\})$ into (2.4) gives some rational solutions to the (2 + 1)-dimensional generalized BK equation (1.5), which are then utilized to search for lump solutions. This type of lump solution is localized in y and ξ.

3. Lump solutions of a (2+1)-D generalized BK equation

3.1. Set I: one-wave solution

We commence with a one-wave function based on $\xi =x-{ct}$, whereby equation (1.5) is transformed as follows:
$ \begin{eqnarray}\left(\alpha {D}_{\xi }^{4}+\beta {D}_{\xi }^{3}{D}_{y}+({\gamma }_{1}-c){D}_{\xi }^{2}+{\gamma }_{2}{D}_{\xi }{D}_{y}+{\gamma }_{3}{D}_{y}^{2}\right){\mathfrak{f}}.{\mathfrak{f}}=0,\end{eqnarray}$
where c is the unfound constant, and
$ \begin{eqnarray*}\begin{array}{rcl}{D}_{\xi }^{4}{\mathfrak{f}}.{\mathfrak{f}} & = & 2({{\mathfrak{ff}}}_{\xi \xi \xi \xi }-4{{\mathfrak{f}}}_{\xi }{{\mathfrak{f}}}_{\xi \xi \xi }+3{{\mathfrak{f}}}_{\xi \xi }^{2}),\\ {D}_{\xi }^{3}{D}_{y}{\mathfrak{f}}.{\mathfrak{f}} & = & 2({{\mathfrak{ff}}}_{\xi \xi \xi y}-{{\mathfrak{f}}}_{y}{{\mathfrak{f}}}_{\xi \xi \xi }-3{{\mathfrak{f}}}_{\xi }{{\mathfrak{f}}}_{\xi \xi y}+3{{\mathfrak{f}}}_{\xi \xi }{{\mathfrak{f}}}_{\xi y}),\\ {D}_{\xi }^{2}{\mathfrak{f}}.{\mathfrak{f}} & = & 2({{\mathfrak{ff}}}_{\xi \xi }-{{\mathfrak{f}}}_{\xi }^{2}),\end{array}\end{eqnarray*}$

$ \begin{eqnarray*}{D}_{\xi }{D}_{y}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{\xi y}-{{\mathfrak{f}}}_{\xi }{{\mathfrak{f}}}_{y}),\ \ {D}_{y}^{2}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{yy}}-{{\mathfrak{f}}}_{y}^{2}).\end{eqnarray*}$

Based on the approach presented in section 2, as proposed by Zhaqilao [56], we are able to derive the higher order lump solutions with controllable center of the variable-coefficient (2+1)-dimensional generalized BK equation. Considering n = 0 at (2.5), then (2.5) will be given as
$ \begin{eqnarray}\begin{array}{rcl}{\mathfrak{f}} & = & {{\mathfrak{f}}}_{1}(\xi ,y;\theta ,\delta )\\ & = & {\chi }_{1}(\xi ,y)+2\delta {{yp}}_{0}(\xi ,y)+2\delta \xi {s}_{0}(\xi ,y)\\ & & +({\theta }^{2}+{\delta }^{2}){\chi }_{-1}(\xi ,y)\\ & = & {a}_{2,0}{\xi }^{2}+{a}_{0,2}{y}^{2}+{a}_{0,0}.\end{array}\end{eqnarray}$
Without loss of generality, we can choose ${a}_{\mathrm{2,0}}=1$. Plugging (3.2) into (3.1) and setting all the coefficients of the different powers of ${y}^{m}{\xi }^{m}$ to zero, we gain a system of nonlinear algebraic equations given as:
$ \begin{eqnarray}\begin{array}{l}4\,{a}_{\mathrm{0,0}}{a}_{\mathrm{0,2}}{\gamma }_{3}-4\,{{ca}}_{\mathrm{0,0}}+4\,{a}_{\mathrm{0,0}}{\gamma }_{1}+24\,\alpha =0,\\ \,4\,{a}_{\mathrm{0,2}}{\gamma }_{3}+4\,c-4\,{\gamma }_{1}=0,\\ \,-4\,{a}_{0,2}^{2}{\gamma }_{3}-4\,{{ca}}_{\mathrm{0,2}}+4\,{a}_{\mathrm{0,2}}{\gamma }_{1}=0.\end{array}\end{eqnarray}$
Solving equation (3.3), we get
$ \begin{eqnarray}{a}_{\mathrm{0,2}}=-\displaystyle \frac{c-{\gamma }_{1}}{{\gamma }_{3}},\ \ {a}_{\mathrm{0,0}}=3\,\displaystyle \frac{\alpha }{c-{\gamma }_{1}}.\end{eqnarray}$
Thus, we can obtain a solution to equation (3.2) as follows:
$ \begin{eqnarray}{\mathfrak{f}}={{\mathfrak{f}}}_{1}(\xi ,y;\theta ,\delta )={\left(\xi -\theta \right)}^{2}-\displaystyle \frac{c-{\gamma }_{1}}{{\gamma }_{3}}{\left(y-\delta \right)}^{2}+\displaystyle \frac{3\alpha }{c-{\gamma }_{1}},\end{eqnarray}$
Assuming λ < 0, and cg(t) > 0, then the first-order lump solutions of equation (1.5) can be expressed as
$ \begin{eqnarray}\begin{array}{rcl}{\rm{\Psi }}(\xi ,y) & = & {{\rm{\Psi }}}_{0}+\displaystyle \frac{4}{-\tfrac{{\left(y-\delta \right)}^{2}\left(c-{\gamma }_{1}\right)}{{\gamma }_{3}}+{\left(\xi -\theta \right)}^{2}+\tfrac{3\alpha }{c-{\gamma }_{1}}}\\ & & -\displaystyle \frac{2{\left(2\xi -2\theta \right)}^{2}}{{\left(-\tfrac{{\left(y-\delta \right)}^{2}\left(c-{\gamma }_{1}\right)}{{\gamma }_{3}}+{\left(\xi -\theta \right)}^{2}+\tfrac{3\alpha }{c-{\gamma }_{1}}\right)}^{2}}.\end{array}\end{eqnarray}$
It is worth mentioning that this lump has the following features:
$ \begin{eqnarray}\mathop{\mathrm{lim}}\limits_{\xi \longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0},\ \ \ \mathop{\mathrm{lim}}\limits_{y\longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0}.\end{eqnarray}$
By selecting suitable values of parameters, the graphical representation of a periodic wave solution is presented in figures 1 and 2 which includes a 3D plot, a contour plot, a density plot, and a 2D plot where three spaces arise at spaces y = −1, y = 0, and y = 1. In figure 1 the lump has one center (δ, θ) = (2, 2), whereas in figure 2 the rogue wave has one center $(\delta ,\theta )=(-2,-2)$. Due to our use of a simple computation, the lump has two critical points, but we investigate only one point, $({\xi }_{1},{y}_{1})=\left(\tfrac{c\theta -\theta \,{\gamma }_{1}+3\,\sqrt{\alpha \,c-\alpha \,{\gamma }_{1}}}{c-{\gamma }_{1}},\delta \right)$. At point (ξ1, y1), the second-order derivative and Hessian matrix can be determined, as given in [60]:
$ \begin{eqnarray}\left\{\begin{array}{l}{\rm{\Theta }}1={\left.\tfrac{{\partial }^{2}}{\partial {\xi }^{2}}{\rm{\Psi }}(\xi ,y)\right|}_{({\xi }_{1},{y}_{1})}=\tfrac{1}{12}\tfrac{{\left(c-{\gamma }_{1}\right)}^{2}}{{\alpha }^{2}},\\ {{\rm{\Delta }}}_{1}={\det }{\left(\begin{array}{cc}\tfrac{{\partial }^{2}}{\partial {\xi }^{2}}{\rm{\Psi }}(\xi ,y) & \tfrac{{\partial }^{2}}{\partial \xi \partial y}{\rm{\Psi }}(\xi ,y)\\ \tfrac{{\partial }^{2}}{\partial \xi \partial y}{\rm{\Psi }}(\xi ,y) & \tfrac{{\partial }^{2}}{\partial {y}^{2}}{\rm{\Psi }}(\xi ,y)\end{array}\right)}_{({\xi }_{1},{y}_{1})}=-\tfrac{\left({c}^{2}-2\,c{\gamma }_{1}+{\gamma }_{1}^{2}\right){\left(c-{\gamma }_{1}\right)}^{3}}{108\,{\alpha }^{4}{\gamma }_{3}}.\end{array}\right.\end{eqnarray}$
If $\tfrac{c-{\gamma }_{1}}{{\gamma }_{3}}\lt 0$, and Δ1 > 0, then point (ξ1, y1) is the extreme value point. Based on the above analysis, point (ξ1, y1) is a maximum value point at which ${{\rm{\Psi }}}_{\max }$. By using different C and λ values, the lump solution ψ(ξ, y) has one maximum value containing ${{\rm{\Psi }}}_{\max }=\tfrac{1}{6}\tfrac{6\,\alpha \,{\psi }_{0}-c+{\gamma }_{1}}{\alpha }$.
Figure 1. The one-order lump (3.6) at $\delta =2,\theta =2,c=3,\alpha =1.2,{\gamma }_{1}=1$, ${\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.
Figure 2. The one-order lump (3.6) at $\delta =-2,\theta =-2,c=3,\alpha =1.2$, ${\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.

3.2. Set II: second-wave solutions

We commence with two-wave functions based on the statement in step 2 in the previous section. Here, we suppose that equation (1.5) has the rational function of two-wave solutions. Taking n = 1 at (2.5), then (2.5) will be expressed as
$ \begin{eqnarray}\begin{array}{rcl}{\mathfrak{f}} & = & {{\mathfrak{f}}}_{2}(\xi ,y;\theta ,\delta )={\chi }_{2}(\xi ,y)+2\delta {{yp}}_{1}(\xi ,y)+2\delta \xi {s}_{1}(\xi ,y)\\ & & +({\theta }^{2}+{\delta }^{2}){\chi }_{0}(\xi ,y)={\xi }^{6}+{a}_{\mathrm{4,2}}{y}^{2}{\xi }^{4}\\ & & +{a}_{\mathrm{2,4}}{y}^{4}{\xi }^{2}+{a}_{\mathrm{0,6}}{y}^{6}\\ & & +{a}_{\mathrm{4,0}}{\xi }^{4}+{a}_{\mathrm{2,2}}{y}^{2}{\xi }^{2}+{a}_{\mathrm{0,4}}{y}^{4}+{a}_{\mathrm{2,0}}{\xi }^{2}+{a}_{\mathrm{0,2}}{y}^{2}+{a}_{\mathrm{0,0}}\\ & & +2\,\delta \,y\left({\xi }^{2}{b}_{\mathrm{2,0}}+{y}^{2}{b}_{\mathrm{0,2}}+{b}_{\mathrm{0,0}}\right)\\ & & +2\,\theta \,\xi \left({\xi }^{2}{c}_{\mathrm{2,0}}+{y}^{2}{c}_{\mathrm{0,2}}+{c}_{\mathrm{0,0}}\right)+{\delta }^{2}+{\theta }^{2}.\end{array}\end{eqnarray}$
Without loss of generality, we can choose ${a}_{\mathrm{6,0}}=1$. Plugging (3.9) into (3.1), and setting all the coefficients of the different powers of ${y}^{m}{\xi }^{m}$ to zero, we gain a system of nonlinear algebraic equations, and by solving the related system we can express the following parameters:
$ \begin{eqnarray}\begin{array}{rclcl}{a}_{\mathrm{0,0}} & = & -\displaystyle \frac{1}{3}\displaystyle \frac{-{\delta }^{2}{a}_{4,2}^{2}{b}_{2,0}^{2}{\gamma }_{3}^{3}+3\,{\delta }^{2}{a}_{4,2}^{3}{\gamma }_{3}^{3}+3\,{\theta }^{2}{a}_{4,2}^{3}{\gamma }_{3}^{3}-3\,{\theta }^{2}{a}_{\mathrm{4,2}}{c}_{0,2}^{2}{\gamma }_{3}^{3}+151875\,{\alpha }^{3}}{{a}_{4,2}^{3}{\gamma }_{3}^{3}},{a}_{\mathrm{0,2}} & = & 1425\,\displaystyle \frac{{\alpha }^{2}}{{a}_{\mathrm{4,2}}{\gamma }_{3}^{2}},\ \end{array}\end{eqnarray}$

$ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{0,4}} & = & -\displaystyle \frac{17\,\alpha \,{a}_{\mathrm{4,2}}}{3\,{\gamma }_{3}},\ {a}_{\mathrm{0,6}}=\displaystyle \frac{1}{27}{a}_{4,2}^{3},\ {a}_{\mathrm{2,0}}=-1125\,\displaystyle \frac{{\alpha }^{2}}{{a}_{4,2}^{2}{\gamma }_{3}^{2}},\\ {a}_{\mathrm{2,2}} & = & -90\,\displaystyle \frac{\alpha }{{\gamma }_{3}},\ {a}_{\mathrm{2,4}}=\displaystyle \frac{1}{3}{a}_{4,2}^{2},\ {a}_{\mathrm{4,0}}=-75\,\displaystyle \frac{\alpha }{{a}_{\mathrm{4,2}}{\gamma }_{3}},\end{array}\end{eqnarray*}$

$ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{4,2}} & = & -3\,\displaystyle \frac{c-{\gamma }_{1}}{{\gamma }_{3}},\ {b}_{\mathrm{0,0}}=-5\,\displaystyle \frac{{b}_{\mathrm{2,0}}\alpha }{{a}_{\mathrm{4,2}}{\gamma }_{3}},\ {b}_{\mathrm{0,2}}=-\displaystyle \frac{1}{9}{a}_{\mathrm{4,2}}{b}_{\mathrm{2,0}},\\ {b}_{\mathrm{2,0}} & = & {b}_{\mathrm{2,0}},\ {c}_{\mathrm{0,0}}=-3\,\displaystyle \frac{{c}_{\mathrm{0,2}}\alpha }{{a}_{4,2}^{2}{\gamma }_{3}},\ {c}_{\mathrm{0,2}}={c}_{\mathrm{0,2}},\ {c}_{\mathrm{2,0}}=-\displaystyle \frac{{c}_{\mathrm{0,2}}}{{a}_{\mathrm{4,2}}},\end{array}\end{eqnarray*}$

in which ${b}_{\mathrm{2,0}}$ and ${c}_{\mathrm{0,2}}$ are arbitrary values. Thus, the second-order lump solutions of equation (1.5) can be obtained by
$ \begin{eqnarray}{\rm{\Psi }}(\xi ,y)=2{\left(\mathrm{ln}{{\mathfrak{f}}}_{2}(\xi ,y;\theta ,\delta \right)}_{\xi \xi },\end{eqnarray}$
where ${{\mathfrak{f}}}_{2}(\xi ,y;\theta ,\delta )$ is given in equation (3.9). It is worth mentioning that this lump displays the following features:
$ \begin{eqnarray}\mathop{\mathrm{lim}}\limits_{\xi \longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0},\ \ \ \mathop{\mathrm{lim}}\limits_{y\longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0}.\end{eqnarray}$
By selecting suitable values of parameters, the graphical representation of periodic wave solution is presented in figures 3 and 4 including 3D plot, contour plot, density plot, and 2D plot where three spaces arise at spaces $y=-1$, y = 0, and y = 1. In figure 3 the rogue wave has one center (δ, θ) = (2, 3), whereas in figure 4 the lump has one center $(\delta ,\theta )=(-2,-3)$.
Figure 3. The second-order lump (3.12) at $\delta =2,\theta =2,c=3,{b}_{\mathrm{2,0}}=2,{c}_{\mathrm{0,2}}=3$, $\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.
Figure 4. The second-order lump (3.12) at $\delta =-2,\theta =-2,c=3,{b}_{\mathrm{2,0}}=2,{c}_{\mathrm{0,2}}=3$, $\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.

3.3. Set III: third-order solutions

We commence with three-wave functions based on the statement in step 2 in the previous section, and suppose that equation (1.5) has the rational function of third-order lump solutions. Taking n = 2 at (2.5), then (2.5) is expressed as
$ \begin{eqnarray}\begin{array}{rcl}{\mathfrak{f}} & = & {{\mathfrak{f}}}_{3}(\xi ,y;\theta ,\delta )={\chi }_{3}(\xi ,y)+2\delta {{yp}}_{2}(\xi ,y)+2\delta \xi {s}_{2}(\xi ,y)\\ & & +({\theta }^{2}+{\delta }^{2}){\chi }_{1}(\xi ,y)={a}_{\mathrm{0,0}}+{\xi }^{12}\\ & & +2\,\theta \,\xi \left({\xi }^{6}{c}_{\mathrm{6,0}}+{\xi }^{4}{y}^{2}{c}_{\mathrm{4,2}}+{\xi }^{2}{y}^{4}{c}_{\mathrm{2,4}}+{y}^{6}{c}_{\mathrm{0,6}}\right.\\ & & \left.+{\xi }^{4}{c}_{\mathrm{4,0}}+{\xi }^{2}{y}^{2}{c}_{\mathrm{2,2}}+{y}^{4}{c}_{\mathrm{0,4}}+{\xi }^{2}{c}_{\mathrm{2,0}}+{y}^{2}{c}_{\mathrm{0,2}}+{c}_{\mathrm{0,0}}\right)\\ & & +{a}_{\mathrm{0,6}}{y}^{6}+{a}_{\mathrm{4,0}}{\xi }^{4}+{a}_{\mathrm{0,4}}{y}^{4}+{a}_{\mathrm{2,0}}{\xi }^{2}+{a}_{\mathrm{0,2}}{y}^{2}+{a}_{\mathrm{8,2}}{y}^{2}{\xi }^{8}\\ & & +{a}_{\mathrm{6,4}}{y}^{4}{\xi }^{6}+{a}_{\mathrm{8,4}}{y}^{4}{\xi }^{8}+{a}_{\mathrm{10,2}}{y}^{2}{\xi }^{10}+{a}_{\mathrm{4,8}}{y}^{8}{\xi }^{4}+{a}_{\mathrm{6,2}}{y}^{2}{\xi }^{6}\\ & & +{a}_{\mathrm{6,6}}{y}^{6}{\xi }^{6}+{a}_{\mathrm{4,4}}{y}^{4}{\xi }^{4}+{a}_{\mathrm{4,6}}{y}^{6}{\xi }^{4}+{a}_{\mathrm{2,8}}{y}^{8}{\xi }^{2}+{a}_{\mathrm{2,6}}{y}^{6}{\xi }^{2}\\ & & +{a}_{\mathrm{2,10}}{y}^{10}{\xi }^{2}+2\,\delta \,y({\xi }^{6}{b}_{\mathrm{6,0}}+{\xi }^{4}{y}^{2}{b}_{\mathrm{4,2}}+{\xi }^{2}{y}^{4}{b}_{\mathrm{2,4}}\\ & & +{y}^{6}{b}_{\mathrm{0,6}}+{\xi }^{4}{b}_{\mathrm{4,0}}+{\xi }^{2}{y}^{2}{b}_{\mathrm{2,2}}+{y}^{4}{b}_{\mathrm{0,4}}+{\xi }^{2}{b}_{\mathrm{2,0}}+{y}^{2}{b}_{\mathrm{0,2}}+{b}_{\mathrm{0,0}})\\ & & +{a}_{\mathrm{0,8}}{y}^{8}+{a}_{\mathrm{0,10}}{y}^{10}+{a}_{\mathrm{0,12}}{y}^{12}+\left({\delta }^{2}+{\theta }^{2}\right){\chi }_{1}(\xi ,y),\end{array}\end{eqnarray}$
where ${\chi }_{1}{(\xi ,y)=(\xi -\theta )}^{2}-\tfrac{c-{\gamma }_{1}}{{\gamma }_{3}}{(y-\delta )}^{2}+\tfrac{3\alpha }{c-{\gamma }_{1}}$. Without loss of generality, we can choose a12,0 = 1. Plugging (3.13) into (3.1) and setting all the coefficients of the different powers of ${y}^{m}{\xi }^{m}$ to zero, we gain a system of nonlinear algebraic equations, and by solving the related system we arrive at the following parameters:
$ \begin{eqnarray}\begin{array}{rcl}\alpha & = & -\displaystyle \frac{{a}_{\mathrm{10,0}}{a}_{\mathrm{10,2}}{\gamma }_{3}}{588},\ c=-\displaystyle \frac{1}{6}{a}_{\mathrm{10,2}}{\gamma }_{3}+{\gamma }_{1},\\ {a}_{\mathrm{0,0}} & = & \displaystyle \frac{\left(9\,150\,625{a}_{10,0}^{5}{a}_{10,2}^{3}+1129430400\,{\theta }^{2}{a}_{\mathrm{10,2}}{c}_{4,2}^{2}+21956126976{\delta }^{2}{b}_{4,2}^{2}\right){a}_{\mathrm{10,0}}}{83013134400{a}_{10,2}^{3}\left({\delta }^{2}+{\theta }^{2}+1\right)},\end{array}\end{eqnarray}$

$ \begin{eqnarray*}\begin{array}{rclcl}{a}_{\mathrm{0,2}} & = & \displaystyle \frac{32896875\,{a}_{10,0}^{5}{a}_{10,2}^{3}+1317668800\,{\theta }^{2}{a}_{\mathrm{10,2}}{c}_{4,2}^{2}+25615481472\,{\delta }^{2}{b}_{4,2}^{2}}{17788528800\,{a}_{10,2}^{2}\left({\delta }^{2}+{\theta }^{2}+1\right)},\,{a}_{\mathrm{0,4}} & = & \displaystyle \frac{334525\,{a}_{10,0}^{4}{a}_{10,2}^{2}}{203297472},\end{array}\end{eqnarray*}$

$ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{0,6}} & = & \displaystyle \frac{28535\,{a}_{10,0}^{3}{a}_{10,2}^{3}}{21781872},\ \ {a}_{\mathrm{0,8}}=\displaystyle \frac{1445\,{a}_{10,0}^{2}{a}_{10,2}^{4}}{4148928},\\ {a}_{\mathrm{0,10}} & = & \displaystyle \frac{29\,{a}_{10,2}^{5}{a}_{\mathrm{10,0}}}{381024},\ \ {a}_{\mathrm{0,12}}=\displaystyle \frac{{a}_{10,2}^{6}}{46656},\end{array}\end{eqnarray*}$

$ \begin{eqnarray*}\begin{array}{rclcl}{a}_{\mathrm{2,0}} & = & \displaystyle \frac{2495625\,{a}_{10,0}^{5}{a}_{10,2}^{3}+188238400{\theta }^{2}{a}_{\mathrm{10,2}}{c}_{4,2}^{2}+3659354496\,{\delta }^{2}{b}_{4,2}^{2}}{423536400\,{a}_{10,2}^{3}\left({\delta }^{2}+{\theta }^{2}+1\right)},{a}_{\mathrm{2,2}} & = & \displaystyle \frac{275\,{a}_{10,0}^{4}{a}_{\mathrm{10,2}}}{268912},\end{array}\end{eqnarray*}$

$ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{2,4}} & = & -\displaystyle \frac{25\,{a}_{10,0}^{3}{a}_{10,2}^{2}}{57624},\ \ {a}_{\mathrm{2,6}}=\displaystyle \frac{1265\,{a}_{10,0}^{2}{a}_{10,2}^{3}}{74088},\\ {a}_{\mathrm{2,8}} & = & \displaystyle \frac{95\,{a}_{\mathrm{10,0}}{a}_{10,2}^{4}}{21168},\ {a}_{\mathrm{2,10}}=\displaystyle \frac{{a}_{10,2}^{5}}{1296},\ {a}_{\mathrm{4,0}}=-\displaystyle \frac{15125\,{a}_{10,0}^{4}}{806736},\end{array}\end{eqnarray*}$

$ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{4,2}} & = & \displaystyle \frac{375\,{a}_{\mathrm{10,2}}{a}_{10,0}^{3}}{9604},\ {a}_{\mathrm{4,4}}=\displaystyle \frac{2675\,{a}_{10,0}^{2}{a}_{10,2}^{2}}{24696},\\ {a}_{\mathrm{4,6}} & = & \displaystyle \frac{365\,{a}_{\mathrm{10,0}}{a}_{10,2}^{3}}{5292},\ {a}_{\mathrm{4,8}}=\displaystyle \frac{5\,{a}_{10,2}^{4}}{432},\ {a}_{\mathrm{6,0}}=\displaystyle \frac{55\,{a}_{10,0}^{3}}{2058},\end{array}\end{eqnarray*}$

$ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{6,2}} & = & \displaystyle \frac{95\,{a}_{\mathrm{10,2}}{a}_{10,0}^{2}}{294},\ {a}_{\mathrm{6,4}}=\displaystyle \frac{55\,{a}_{\mathrm{10,0}}{a}_{10,2}^{2}}{126},\ {a}_{\mathrm{6,6}}=\displaystyle \frac{5\,{a}_{10,2}^{3}}{54},\\ {a}_{\mathrm{8,0}} & = & \displaystyle \frac{15\,{a}_{10,0}^{2}}{196},\ {a}_{\mathrm{8,2}}=\displaystyle \frac{115\,{a}_{\mathrm{10,0}}{a}_{\mathrm{10,2}}}{98},\ {a}_{\mathrm{8,4}}=\displaystyle \frac{5\,{a}_{10,2}^{2}}{12},\end{array}\end{eqnarray*}$

$ \begin{eqnarray*}{a}_{\mathrm{10,0}}={a}_{\mathrm{10,0}},\ {a}_{\mathrm{10,2}}={a}_{\mathrm{10,2}},\end{eqnarray*}$

$ \begin{eqnarray*}\begin{array}{rcl}{b}_{\mathrm{0,0}} & = & -\displaystyle \frac{11\,{a}_{10,0}^{3}{b}_{\mathrm{4,2}}}{1372\,{a}_{\mathrm{10,2}}},\ {b}_{\mathrm{0,2}}=\displaystyle \frac{{a}_{10,0}^{2}{b}_{\mathrm{4,2}}}{196},\ {b}_{\mathrm{0,4}}=\displaystyle \frac{{a}_{\mathrm{10,0}}{a}_{\mathrm{10,2}}{b}_{\mathrm{4,2}}}{420},\\ {b}_{\mathrm{0,6}} & = & -\displaystyle \frac{{a}_{10,2}^{2}{b}_{\mathrm{4,2}}}{180},\ {b}_{\mathrm{2,0}}=\displaystyle \frac{57\,{a}_{10,0}^{2}{b}_{\mathrm{4,2}}}{686\,{a}_{\mathrm{10,2}}},\end{array}\end{eqnarray*}$

$ \begin{eqnarray*}\begin{array}{rcl}{b}_{\mathrm{2,2}} & = & \displaystyle \frac{19\,{a}_{\mathrm{10,0}}{b}_{\mathrm{4,2}}}{49},\ {b}_{\mathrm{2,4}}=\displaystyle \frac{3}{10}{a}_{\mathrm{10,2}}{b}_{\mathrm{4,2}},\ {b}_{\mathrm{4,0}}=-\displaystyle \frac{9\,{a}_{\mathrm{10,0}}{b}_{\mathrm{4,2}}}{7\,{a}_{\mathrm{10,2}}},\\ {b}_{\mathrm{4,2}} & = & {b}_{\mathrm{4,2}},\ {b}_{\mathrm{6,0}}=-6\,\displaystyle \frac{{b}_{\mathrm{4,2}}}{{a}_{\mathrm{10,2}}},\ {c}_{\mathrm{0,0}}=-\displaystyle \frac{5\,{a}_{10,0}^{3}{c}_{\mathrm{4,2}}}{1764\,{a}_{\mathrm{10,2}}},\end{array}\end{eqnarray*}$

$ \begin{eqnarray*}\begin{array}{rcl}{c}_{\mathrm{0,2}} & = & -\displaystyle \frac{535\,{a}_{10,0}^{2}{c}_{\mathrm{4,2}}}{86436},\ {c}_{\mathrm{0,4}}=-\displaystyle \frac{5\,{a}_{\mathrm{10,0}}{a}_{\mathrm{10,2}}{c}_{\mathrm{4,2}}}{588},\\ {c}_{\mathrm{0,6}} & = & -\displaystyle \frac{5\,{a}_{10,2}^{2}{c}_{\mathrm{4,2}}}{324},\ {c}_{\mathrm{2,0}}=\displaystyle \frac{5\,{a}_{10,0}^{2}{c}_{\mathrm{4,2}}}{294\,{a}_{\mathrm{10,2}}},\\ {c}_{\mathrm{2,2}} & = & \displaystyle \frac{115\,{a}_{\mathrm{10,0}}{c}_{\mathrm{4,2}}}{441},\end{array}\end{eqnarray*}$

$ \begin{eqnarray*}\begin{array}{rcl}{c}_{\mathrm{2,4}} & = & \displaystyle \frac{5\,{a}_{\mathrm{10,2}}{c}_{\mathrm{4,2}}}{54},\ {c}_{\mathrm{4,0}}=-\displaystyle \frac{13\,{a}_{\mathrm{10,0}}{c}_{\mathrm{4,2}}}{147\,{a}_{\mathrm{10,2}}},\\ {c}_{\mathrm{4,2}} & = & {c}_{\mathrm{4,2}},\ {c}_{\mathrm{6,0}}=-\displaystyle \frac{2}{3}\displaystyle \frac{{c}_{\mathrm{4,2}}}{{a}_{\mathrm{10,2}}},\end{array}\end{eqnarray*}$

in which ${b}_{\mathrm{4,2}}$ and ${c}_{\mathrm{4,2}}$ are arbitrary values. Thus, the third-order lump solutions of equation (1.5) can be obtained by
$ \begin{eqnarray}{\rm{\Psi }}(\xi ,y)=2{\left(\mathrm{ln}{{\mathfrak{f}}}_{3}(\xi ,y;\theta ,\delta \right)}_{\xi \xi },\end{eqnarray}$
where ${{\mathfrak{f}}}_{3}(\xi ,y;\theta ,\delta )$ is given in equation (3.9). It is worth mentioning that this lump has the following features:
$ \begin{eqnarray}\mathop{\mathrm{lim}}\limits_{\xi \longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0},\ \ \ \mathop{\mathrm{lim}}\limits_{y\longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0}.\end{eqnarray}$
By selecting suitable values of parameters, the graphical representation of periodic wave solution is presented in figures 57 including 3D plot, contour plot, density plot, and 2D plot where three spaces arise at spaces y = −1, y = 0, and y = 1. In figure 5 the rogue wave has one center $(\delta ,\theta )=(-2,-3)$, while in figure 6 the lump has one center (δ, θ) = (2, 3), and in figure 7 the rogue wave has one center (δ, θ) = (0, 0).
Figure 5. The three-order lump (3.16) at $\delta =-2,\theta =-3,c=2,{c}_{\mathrm{4,2}}=2,{b}_{\mathrm{2,0}}=2$, ${b}_{\mathrm{4,2}}=3,{c}_{\mathrm{0,2}}=3\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.
Figure 6. The three-order lump (3.16) at $\delta =2,\theta =3,c=2,{c}_{\mathrm{4,2}}=2,{b}_{\mathrm{2,0}}=2,{b}_{\mathrm{4,2}}=3$, ${c}_{\mathrm{0,2}}=3\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.
Figure 7. The three-order lump (3.16) at $\delta =0,\theta =0,c=2,{c}_{\mathrm{4,2}}=2,{b}_{\mathrm{2,0}}=2$, ${b}_{\mathrm{4,2}}=3,{c}_{\mathrm{0,2}}=3\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.

4. Application of SIVP for equation (1.5)

By utilizing the wave transformation $\xi =k(x+y-{ct})$ in equation (1.5) one can arrive at a nonlinear ordinary differential equation as follows:
$ \begin{eqnarray}\begin{array}{l}{k}^{2}(\alpha +\beta ){\rm{\Psi }}\unicode{x02057}+6k(\alpha +\beta ){\rm{\Psi }}^{\prime} {\rm{\Psi }}^{\prime\prime} \\ \quad +\,({\gamma }_{1}+{\gamma }_{2}+{\gamma }_{3}-c){\rm{\Psi }}^{\prime\prime} =0.\end{array}\end{eqnarray}$
Based on the semi-inverse variational principle [6163], and by multiplying equation (4.1) with ${\rm{\Psi }}^{\prime} $ and integrating, we obtain the stationary integral
$ \begin{eqnarray}\begin{array}{rcl}J & = & {\displaystyle \int }_{-\infty }^{\infty }\left(2k(\alpha +\beta ){\left({\rm{\Psi }}^{\prime} \right)}^{3}-\displaystyle \frac{1}{2}{k}^{2}(\alpha +\beta ){\left({\rm{\Psi }}^{\prime\prime} \right)}^{2}\right.\\ & & \left.+\displaystyle \frac{1}{2}({\gamma }_{1}+{\gamma }_{2}+{\gamma }_{3}-c){\left({\rm{\Psi }}^{\prime} \right)}^{2}+{k}^{2}(\alpha +\beta ){\rm{\Psi }}^{\prime} {\rm{\Psi }}\prime\prime\prime \right){\rm{d}}\xi .\end{array}\end{eqnarray}$

4.1. Case I

Using the solitary wave function as follows:
$ \begin{eqnarray}u(\xi )=A\ {\rm{sech}} \left(B\xi \right).\end{eqnarray}$
Thus, the stationary integral changes to
$ \begin{eqnarray}\begin{array}{rcl}J & = & \displaystyle \frac{1}{30}{A}^{2}B\left(-21\,{B}^{2}\alpha \,{k}^{2}-21\,{B}^{2}\beta \,{k}^{2}\right.\\ & & \left.-12\,{kAB}\alpha -12\,{kAB}\beta -5\,c+5\,{\gamma }_{1}+5\,{\gamma }_{2}+5\,{\gamma }_{3}\right),\end{array}\end{eqnarray}$
SIVP notes that the soliton amplitude and its inverse width are found according to the coupled system given below as
$ \begin{eqnarray}\displaystyle \frac{\partial J}{\partial A}=0\end{eqnarray}$
and
$ \begin{eqnarray}\displaystyle \frac{\partial J}{\partial B}=0,\end{eqnarray}$
and arrive at the following two nonlinear algebraic systems:
$ \begin{eqnarray}\begin{array}{l}\displaystyle \frac{1}{15}{AB}\left(-21\,{B}^{2}\alpha \,{k}^{2}-21\,{B}^{2}\beta \,{k}^{2}-12\,{kAB}\alpha -12\,{kAB}\beta \right.\\ \quad \left.-\,5\,c+5\,{\gamma }_{1}+5\,{\gamma }_{2}+5\,{\gamma }_{3}\right)\\ \quad +\,\displaystyle \frac{1}{30}{A}^{2}B\left(-12\,B\alpha \,k-12\,B\beta \,k\right)=0,\end{array}\end{eqnarray}$
$ \begin{eqnarray}\begin{array}{l}\displaystyle \frac{1}{30}{A}^{2}\left(-21\,{B}^{2}\alpha \,{k}^{2}-21\,{B}^{2}\beta \,{k}^{2}-12\,{kAB}\alpha \right.\\ \quad \left.-\,12\,{kAB}\beta -5\,c+5\,{\gamma }_{1}+5\,{\gamma }_{2}+5{\gamma }_{3}\right)\\ \quad +\,\displaystyle \frac{1}{30}{A}^{2}B\left(-42\,B\alpha \,{k}^{2}-42B\beta \,{k}^{2}\right.\\ \quad -\,12\,A\alpha \,k-12\,A\beta \,k=0.\end{array}\end{eqnarray}$
By solving the above equations, one can recover a relation between these two parameters from (4.7) and (4.8) as
$ \begin{eqnarray}\begin{array}{rcl}A & = & \pm \displaystyle \frac{1}{3}\displaystyle \frac{\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\sqrt{21}}{\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}},\\ B & = & \pm \displaystyle \frac{1}{21}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)k}.\end{array}\end{eqnarray}$
The domain of definition of the above relations will be as
$ \begin{eqnarray}\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\gt 0.\end{eqnarray}$
Lastly, the solitary wave solution acquired by means of SIVP will be as
$ \begin{eqnarray}\begin{array}{l}{\rm{\Psi }}(x,y,t)=\pm \displaystyle \frac{1}{3}\displaystyle \frac{\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\sqrt{21}}{\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}\ {\rm{sech}} \\ \times \,\left[\pm \displaystyle \frac{1}{21}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)}(x+y-{ct})\right].\end{array}\end{eqnarray}$

4.2. Case II

We use the solitary wave function as follows:
$ \begin{eqnarray}u(\xi )=A\ {{\rm{sech}} }^{2}(B\xi ).\end{eqnarray}$
Thus, the stationary integral changes to
$ \begin{eqnarray}J=-\displaystyle \frac{\left(240\,{B}^{2}\alpha \,{k}^{2}+240\,{B}^{2}\beta \,{k}^{2}+70\,{kAB}\alpha +70\,{kAB}\beta +28\,c-28\,{\gamma }_{1}-28\,{\gamma }_{2}-28\,{\gamma }_{3}\right){A}^{2}B}{105}.\end{eqnarray}$
SIVP notes that the soliton amplitude and its inverse width are found according to the coupled system given below as
$ \begin{eqnarray}\displaystyle \frac{\partial J}{\partial A}=-\displaystyle \frac{\left(70B\alpha k+70B\beta k\right){A}^{2}B}{105}-\displaystyle \frac{\left(480{B}^{2}\alpha {k}^{2}+480{B}^{2}\beta {k}^{2}+140{kAB}\alpha +140{kAB}\beta +56c-56{\gamma }_{1}-56\,{\gamma }_{2}-56{\gamma }_{3}\right){AB}}{105}=0\end{eqnarray}$
and
$ \begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{\partial J}{\partial B} & = & -\displaystyle \frac{\left(480\,B\alpha \,{k}^{2}+480\,B\beta \,{k}^{2}+70\,A\alpha \,k+70\,A\beta \,k\right){A}^{2}B}{105}\\ & & -\displaystyle \frac{\left(240\,{B}^{2}\alpha \,{k}^{2}+240\,{B}^{2}\beta \,{k}^{2}+70\,{kAB}\alpha +70\,{kAB}\beta +28\,c-28\,{\gamma }_{1}-28\,{\gamma }_{2}-28\,{\gamma }_{3}\right){A}^{2}}{105}=0.\end{array}\end{eqnarray}$
By solving the above equations, one can recover a relation between these two parameters from (4.14) and (4.15) as
$ \begin{eqnarray}\begin{array}{rcl}A & = & \pm \displaystyle \frac{\left(16\,c-16\,{\gamma }_{1}-16\,{\gamma }_{2}-16\,{\gamma }_{3}\right)\sqrt{21}}{35\,\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}},\\ B & = & \pm \displaystyle \frac{1}{30}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)k}.\end{array}\end{eqnarray}$
The domain of definition of the above relations will be as
$ \begin{eqnarray}\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\gt 0.\end{eqnarray}$
Lastly, the bright wave solution acquired by means of SIVP will be as
$ \begin{eqnarray}\begin{array}{l}{\rm{\Psi }}(x,y,t)=\pm \displaystyle \frac{\left(16\,c-16\,{\gamma }_{1}-16\,{\gamma }_{2}-16\,{\gamma }_{3}\right)\sqrt{21}}{35\,\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}\ {{\rm{sech}} }^{2}\\ \times \,\left[\pm \displaystyle \frac{1}{30}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)}(x+y-{ct})\right].\end{array}\end{eqnarray}$

4.3. Case III

Suppose the dark soliton wave solution takes the following form:
$ \begin{eqnarray}u(\xi )=A\ {\tanh }^{2}(B\xi ).\end{eqnarray}$
Thus, the stationary integral changes to
$ \begin{eqnarray}J=-\displaystyle \frac{2\,{A}^{2}B\left(-120\,{B}^{2}{{ck}}^{2}+35\,{kABc}-14\,S\right)}{105}.\end{eqnarray}$
SIVP notes that the soliton amplitude and its inverse width are found according to the coupled system given below as
$ \begin{eqnarray}\displaystyle \frac{\partial J}{\partial A}=\displaystyle \frac{2\,{A}^{2}B\left(-120\,{B}^{2}\alpha \,{k}^{2}-120\,{B}^{2}\beta \,{k}^{2}+35\,{kAB}\alpha +35\,{kAB}\beta -14\,c+14\,{\gamma }_{1}+14\,{\gamma }_{2}+14\,{\gamma }_{3}\right)}{105}=0\end{eqnarray}$
and
$ \begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{\partial J}{\partial B} & = & \displaystyle \frac{2\,{A}^{2}\left(-120\,{B}^{2}\alpha \,{k}^{2}-120\,{B}^{2}\beta \,{k}^{2}+35\,{kAB}\alpha +35\,{kAB}\beta -14\,c+14\,{\gamma }_{1}+14\,{\gamma }_{2}+14\,{\gamma }_{3}\right)}{105}\\ & & +\displaystyle \frac{2\,{A}^{2}B\left(-240\,B\alpha \,{k}^{2}-240\,B\beta \,{k}^{2}+35\,A\alpha \,k+35A\beta \,k\right)}{105}=0.\end{array}\end{eqnarray}$
By solving the above equations, one can recover a relation between these two parameters from (4.21) and (4.22) as
$ \begin{eqnarray}\begin{array}{rcl}A & = & \pm \displaystyle \frac{\left(16\,c-16\,{\gamma }_{1}-16\,{\gamma }_{2}-16\,{\gamma }_{3}\right)\sqrt{21}}{35\,\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}},\\ B & = & \pm \displaystyle \frac{1}{30}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)k}.\end{array}\end{eqnarray}$
The domain of definition of the above relations will be as
$ \begin{eqnarray}\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\gt 0.\end{eqnarray}$
Lastly, the dark wave solution acquired by the help of SIVP will be as
$ \begin{eqnarray}\begin{array}{l}{\rm{\Psi }}(x,y,t)=\pm \displaystyle \frac{\left(16\,c-16\,{\gamma }_{1}-16\,{\gamma }_{2}-16\,{\gamma }_{3}\right)\sqrt{21}}{35\,\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}\ {\tanh }^{2}\\ \times \,\left[\pm \displaystyle \frac{1}{30}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)}(x+y-{ct})\right].\end{array}\end{eqnarray}$

5. Conclusion

In this article, we obtained multiple lump solutions and solitary, bright, and dark soliton solutions for the generalized Bogoyavlensky–Konopelchenko equation. The multiple lump solutions method contains first-order, second-order, and third-order wave solutions. At the critical point, the second-order derivative and Hessian matrix for only one point was investigated, and the lump solution for the first-order rouge wave solution obtained one maximum value. These results are beneficial for the study of gas, plasma, optics, acoustics, heat transfer, fluid dynamics, and classical mechanics. All calculations in this paper have been made using Maple.

Conflict of Interest:

The author declares that he has no conflict of interest.

Funding:

This work was not supported by any specific funding.

1
Dehghan M Manafian J Saadatmandi A 2011 Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics Int. J. Numer. Methods Heat Fluid Flow 21 736 753

DOI

2
Dehghan M Manafian J Saadatmandi A 2010 Solving nonlinear fractional partial differential equations using the homotopy analysis method Numer. Methods Partial Differ. 26 448 479

DOI

3
Dehghan M Manafian J 2009 The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method Zeitschrift für Naturforschung A 64a 420 430

DOI

4
Sindi C T Manafian J 2017 Wave solutions for variants of the KdV-Burger and the K(n,n)-Burger equations by the generalized G’/G-expansion method Math. Method Appl. Sci. 40 4350 4363

DOI

5
Manafian J Lakestani M 2016 Application of ${\tan }(\phi /2)$-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity Optik 127 2040 2054

DOI

6
Seadawy A R Manafian J 2018 New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod Results in Physics 8 1158 1167

DOI

7
Manafian J 2018 Novel solitary wave solutions for the (3+1)-dimensional extended Jimbo-Miwa equations Comput. Math. Appl. 76 1246 1260

DOI

8
Manafian J Lakestani M 2020 N-lump and interaction solutions of localized waves to the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation J. Geom. Phys. 150 103598

DOI

9
Manafian J Murad M A S Alizadeh A Jafarmadar S 2020 M-lump, interaction between lumps and stripe solitons solutions to the (2+1)-dimensional KP-BBM equation Eur. Phys. J. Plus 135 167

DOI

10
Ma W X Zhou Y 2018 Lump solutions to nonlinear partial differential equations via Hirota bilinear forms J. Differ. Equ. 264 2633 2659

DOI

11
Ma W X 2019 A search for lump solutions to a combined fourthorder nonlinear PDE in (2+1)-dimensions J. Appl. Anal. Comput. 9 1319 1332

DOI

12
Ma W X 2019 Interaction solutions to Hirota-Satsuma-Ito equation in (2+1)-dimensions Front. Math. China 14 619 629

DOI

13
Ma W X 2019 Long-time asymptotics of a three-component coupled mKdV system Mathematics 7 573

DOI

14
Manafian J Mohammadi-Ivatlo B Abapour M 2019 Lump-type solutions and interaction phenomenon to the (2+1)-dimensional Breaking Soliton equation Appl. Math. Comput. 13 13 41

DOI

15
Ilhan O A Manafian J Shahriari M 2019 Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev-Petviashvili equation Comput. Math. Appl. 78 2429 2448

DOI

16
Ilhan O A Manafian J 2019 Periodic type and periodic cross-kink wave solutions to the (2+1)-dimensional breaking soliton equation arising in fluid dynamics Mod. Phys. Lett. B 33 1950277

DOI

17
Ma W X Zhou Y Dougherty R 2016 Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations Int. J. Mod. Phys. B 30 1640018

DOI

18
J Bilige S Gao X Bai Y Zhang R 2018 Abundant lump solution and interaction phenomenon to Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation J. Appl. Math. Phys. 6 1733 1747

DOI

19
Manafian J Ilhan O A Alizadeh A 2020 Periodic wave solutions and stability analysis for the KP-BBM equation with abundant novel interaction solutions Phys. Scr. 95 065203

DOI

20
He J H 2019 A modified Li-He’s variational principle for plasma Int. J. Numer. Methods Heat Fluid Flow

DOI

21
He J H 2019 Lagrange crisis and generalized variational principle for 3D unsteady flow Int. J. Numer. Methods Heat Fluid Flow 30 1189 1196

DOI

22
Chen S S Tian B Liu L Yuan Y Q Zhang C R 2019 Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrödinger system Chaos Solitons Fractals 118 337 346

DOI

23
Du X X Tian B Wu X Y Yin H M Zhang C R 2018 Lie group analysis, analytic solutions and conservation laws of the (3+1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electronpositron- ion plasma Eur. Phys. J. Plus 133 378

DOI

24
Ray S Saha 2017 On conservation laws by Lie symmetry analysis for (2+1)-dimensional Bogoyavlensky–Konopelchenko equation in wave propagation Comput. Math. Appl. 74 1158 1165

DOI

25
Zhao X H Tian B Xie X Y Wu X Y Sun Y Guo Y J 2018 Solitons, Bäcklund transformation and Lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth Waves Random Complex 28 356 366

DOI

26
Abdullahi R A 2016 The generalized (1+1)-dimensional and (2+1)-dimensional Ito equations: Multiple exp-function algorithm and multiple wave solutions Comput. Math. Appl. 71 1248 1258

DOI

27
Ma W X Zhu Z 2012 Solving the (3+1)-dimensional generalized kp and bkp equations by the multiple exp-function algorithm Appl. Math. Comput. 218 11871 11879

DOI

28
Baskonus H M Bulut H 2016 Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics Waves Random Complex Media 26 201 208

DOI

29
Sulaiman T A Nuruddeen R I Zerrad E Mikail B B 2019 Dark and singular solitons to the two nonlinear Schrödinger’s equations Optik 186 423 430

DOI

30
Inc M Aliyu A I Yusuf A Baleanu D 2018 Optical solitary waves, conservation laws and modulation instabilty analysis to nonlinear Schrödinger’s equations in compressional dispersive Alfvan waves Optik 155 257 266

DOI

31
Bogoyavlenskii O I 1990 Breaking solitons in 2 + 1-dimensional integrable equations Russian Math. Surveys 45 1 86

DOI

32
Kudryasho N Pickering A 1998 Rational solutions for Schwarzian integrable hierarchies J. Phys. A: Math. Gen. 31 9505 9518

DOI

33
Clarkson P A Gordoa P R Pickering A 1997 Multicomponent equations associated to non-isospectral scattering problems Inverse Problems 13 1463 1476

DOI

34
Estevez P G Prada J 2004 A generalization of the sine-Gordon equation (2+1)-dimensions J. Nonlinear Math. Phys. 11 168 179

DOI

35
Zahran E H M Khater M M A 2016 Modified extended tanh-function method and its applications to the Bogoyavlenskii equation Appl. Math. Model. 40 1769 1775

DOI

36
Abadi S A M Naja M 2012 Soliton solutions for (2+1)-dimensional breaking soliton equation: three wave method Int. J. Appl. Math. Res. 1 141 149

DOI

37
Xin X P Liu X Q Zhang L L 2010 Explicit solutions of the Bogoyavlensky-Konoplechenko equation Appl. Math. Comput. 215 3669 3673

DOI

38
Prabhakar M V Bhate H 2003 Exact solutions of the Bogoyavlensky–Konoplechenko equation Lett. Math. Phys. 64 1 6

DOI

39
Chen S T Ma W X 2019 Exact Solutions to a Generalized Bogoyavlensky–Konopelchenko equation via Maple Symbolic Computations Complexity 2019 8787460

DOI

40
Liu Y Wen X Y Wang D S 2019 Novel interaction phenomena of localized waves in the generalized (3+1)-dimensional KP equation Comp. Math. Appl. 78 1 19

DOI

41
Liu Y Wen X Y Wang D S 2019 The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation Comp. Math. Appl. 77 947 966

DOI

42
Wang D S Hu X H Liu W M 2010 Localized nonlinear matter waves in two-component Bose–Einstein condensates with time- and space-modulated nonlinearities Phys. Rev. A 82 023612

DOI

43
Wang D S Song S W Xiong B Liu W M 2011 Quantized vortices in a rotating Bose–Einstein condensate with spatiotemporally modulated interaction Phys. Rev. A 84 053607

DOI

44
Wang D S Zhang D J Yang J 2010 Integrable properties of the general coupled nonlinear Schrodinger equations J. Math. Phys. 51 023510

DOI

45
He J H 2019 Generalized variational principles for buckling analysis of circular cylinders Acta Mech. 231 899 906

DOI

46
He J H 2020 A fractal variational theory for one-dimensional compressible flow in a microgravity space Fractals 28 2050024

DOI

47
He J H 2020 Variational principle for the generalized KdV-burgers equation with fractal derivatives for shallow water waves J. Appl. Comput. Mech. 6 735 740

48
He J H Sun C 2019 A variational principle for a thin film equation J. Math. Chem. 57 2075 2081

DOI

49
Liu J F 2009 He’s variational approach for nonlinear oscillators with high nonlinearity Comput. Math. Appl. 58 2423 2426

DOI

50
Nawaz Y Arif M S Bibi M Naz M Fayyaz R 2019 An effective modificationof He’s variational approachto a nonlinear oscillator J. Low Freq. Noise Vib. 38 1013 1022

DOI

51
He J H 2007 Variational approach for nonlinear oscillators Chaos, Solitons Fract. 34 1430 1439

DOI

52
He J H 2019 The simplest approach to nonlinear oscillators Results in Physics 15 102546

DOI

53
Kovacic I Rakaric Z Cveticanin L 2010 A non-simultaneous variational approach for the oscillators with fractional-order power nonlinearities Appl. Math. Computat. 217 3944 3954

DOI

54
Ain Q T He J H 2019 On two-scale dimension and its applications Thermal Science 23 1707 1712

DOI

55
He J H Ji F Y 2019 Two-scale mathematics and fractional calculus for thermodynamics Therm. Sci. 23 2131 2133

DOI

56
Zhaqilao 2018 A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems Comput. Math. Appl. 75 3331 3342

DOI

57
Liu W Zhang Y 2019 Multiple rogue wave solutions for a (3+1)-dimensional Hirota bilinear equation Appl. Math. Let. 98 184 190

DOI

58
Zhang H Y Zhang Y F 2019 Analysis on the M-rogue wave solutions of a generalized (3+1)-dimensional KP equation Appl. Math. Let. 102 106145

DOI

59
Clarkson P A Dowie E 2017 Rational solutions of the Boussinesq equation and applications to rogue waves Trans. Math. Appl. 1 1 26

DOI

60
Wang C J 2016 Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation Nonlinear Dynam. 84 697 702

DOI

61
He J H 2006 Some asymptotic methods for strongly nonlinear equations Int. J. Modern Phys. B 20 1141 1199

DOI

62
He J H 2020 A short review on analytical methods for to a fully fourth-order nonlinear integral boundary value problem with fractal derivatives Int. J. Numerical Meth. Heat and Fluid Flow

DOI

63
Ji F Y He C H Zhang J J He J H 2020 A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar Appl. Math. Model. 82 437 448

DOI

Outlines

/