Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Bilinear forms through the binary Bell polynomials, N solitons and Bäcklund transformations of the Boussinesq–Burgers system for the shallow water waves in a lake or near an ocean beach

  • Xin-Yi Gao ,
  • Yong-Jiang Guo ,
  • Wen-Rui Shan
Expand
  • State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

Received date: 2020-04-07

  Revised date: 2020-04-28

  Accepted date: 2020-06-22

  Online published: 2020-09-11

Copyright

© 2020 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

Water waves are one of the most common phenomena in nature, the studies of which help energy development, marine/offshore engineering, hydraulic engineering, mechanical engineering, etc. Hereby, symbolic computation is performed on the Boussinesq–Burgers system for shallow water waves in a lake or near an ocean beach. For the water-wave horizontal velocity and height of the water surface above the bottom, two sets of the bilinear forms through the binary Bell polynomials and N-soliton solutions are worked out, while two auto-Bäcklund transformations are constructed together with the solitonic solutions, where N is a positive integer. Our bilinear forms, N-soliton solutions and Bäcklund transformations are different from those in the existing literature. All of our results are dependent on the water-wave dispersive power.

Cite this article

Xin-Yi Gao , Yong-Jiang Guo , Wen-Rui Shan . Bilinear forms through the binary Bell polynomials, N solitons and Bäcklund transformations of the Boussinesq–Burgers system for the shallow water waves in a lake or near an ocean beach[J]. Communications in Theoretical Physics, 2020 , 72(9) : 095002 . DOI: 10.1088/1572-9494/aba23d

Water has been known as a constant reminder that life repeats and the only element that has a visible cycle [1]. The water cycle has been believed to result in the distribution of water on land surface, to purify water, to support plant growth, to facilitate agriculture and to sustain aquatic ecosystem [2]. Water waves have been seen as one of the most common phenomena in nature, the studies of which help the energy development, marine/offshore engineering, hydraulic engineering, mechanical engineering, etc [310]. On the water waves, each year, hundreds of papers have been published, a few of which, e.g. are [310] recently. More recent nonlinear-physics contributions have been seen as well [1113].
For the propagation of shallow water waves in a lake or near an ocean beach, people have investigated the Boussinesq–Burgers system [1419],
$ \begin{eqnarray}{u}_{t}=\displaystyle \frac{\beta -1}{2}\,{u}_{{xx}}+2{{uu}}_{x}+\displaystyle \frac{1}{2}{v}_{x},\,\end{eqnarray}$
$ \begin{eqnarray}{v}_{t}=\left(1-\displaystyle \frac{\beta }{2}\right)\beta {u}_{{xxx}}+2{\left({uv}\right)}_{x}+\displaystyle \frac{1-\beta }{2}\,{v}_{{xx}},\,\,\end{eqnarray}$
where x and t are the normalized space and time, the subscripts denote the partial derivatives, the differentiable function u = u(x, t) represents the horizontal velocity, and the differentiable function v = v(x, t) denotes the height of the water surface above the bottom level [16], while β is a real constant representing the dispersive power [15].
For system (1), finite-band solutions have been investigated with the help of the Lax representations of some stationary evolution equations [14], rational solutions have been obtained via the bilinear method and Kadomtsev–Petviashvili hierarchy reduction [15], non-auto-Bäcklund transformations, nonlocal symmetries, conservation laws and interaction solutions have been constructed [16], Darboux transformations and multi-soliton solutions have been presented [17, 18], bilinear form and multi-soliton solutions have been studied [19]. By the way, other issues related to system (1) have been seen [2028].
However, to our knowledge, Bell-polynomial investigation on the bilinear forms and N solitons for system (1) has not been carried out, where N is a positive integer. Auto-Bäcklund-transformation work on system (1), which is different from that in [16], has not been discussed, either. In this paper, we will briefly review the Bell-polynomial concepts. With the binary Bell polynomials and symbolic computation[29] we will work out the bilinear forms for system (1), which are different from those in [15, 19], and N solitons for system (1), which are different from those in [1519]. Also with symbolic computation, we will construct two auto-Bäcklund transformations with some soliton features. Conclusions will come out last.
Let us begin the work with the Bell-polynomial preliminary: Bell polynomials have been said to provide a relatively-direct way to get the bilinear forms for certain nonlinear evolution equations, instead of the dependent variable transformations [3032]. References [3032] have presented the following:

The two-dimensional Bell polynomials:

$ \begin{eqnarray}\begin{array}{rcl}{Y}_{{mx},{nt}}(\theta ) & \equiv & {Y}_{m,n}({\theta }_{\mathrm{1,1}},\cdots ,{\theta }_{1,n},\cdots ,{\theta }_{m,1},\cdots ,{\theta }_{m,n})\\ & = & {{\rm{e}}}^{-\theta }{\partial }_{x}^{m}{\partial }_{t}^{n}{{\rm{e}}}^{\theta },\end{array}\end{eqnarray}$
where θ is a ${C}^{\infty }$ function of x and t, ${\theta }_{k,l}={\partial }_{x}^{k}{\partial }_{t}^{l}\theta $, $k=0,\cdots ,m,l=0,\cdots ,n$, with m and n being the nonnegative integers, e.g.
$ \begin{eqnarray}\begin{array}{lcl}{Y}_{x,t} & = & {\theta }_{x,t}+{\theta }_{x}{\theta }_{t},\\ {Y}_{2x,t} & = & {\theta }_{2x,t}+{\theta }_{2x}{\theta }_{t}+2{\theta }_{x,t}{\theta }_{x}+{\theta }_{x}^{2}{\theta }_{t},\quad \cdots .\end{array}\end{eqnarray}$

The binary Bell polynomials:

$ \begin{eqnarray}\displaystyle \begin{array}{rl}{{\mathscr{Y}}}_{{mx},{nt}}(p,q) & \equiv \,{Y}_{{mx},{nt}}({\psi }_{\mathrm{1,1}},\cdots ,{\psi }_{1,n},\cdots ,{\psi }_{m,1},\,{\left.\cdots ,{\psi }_{m,n})\right|}_{{\psi }_{k,l}=\left\{\begin{array}{l}{p}_{k,l},\mathrm{if}k+l\mathrm{is}\mathrm{odd},\\ {q}_{k,l},\mathrm{if}k+l\mathrm{is}\mathrm{even},\end{array}\right.}\end{array}\end{eqnarray}$
where p(x, t) and q(x, t) are both the ${C}^{\infty }$ functions of x and t, ${\psi }_{k,l}$'s are all the functions of p and q, ${p}_{k,l}={\partial }_{x}^{k}{\partial }_{t}^{l}p$ and ${q}_{k,l}={\partial }_{x}^{k}{\partial }_{t}^{l}q$, e.g.
$ \begin{eqnarray}\begin{array}{lcl}{{\mathscr{Y}}}_{x}(p,q) & = & {p}_{x},\quad {{\mathscr{Y}}}_{2x}(p,q)={q}_{2x}+{p}_{x}^{2},\\ {{\mathscr{Y}}}_{x,t}(p,q) & = & {p}_{x}{p}_{t}+{q}_{{xt}},\\ {{\mathscr{Y}}}_{3x}(p,q) & = & {p}_{3x}+3{p}_{x}{q}_{2x}+{p}_{x}^{3},\ \ \cdots .\,\end{array}\end{eqnarray}$

References [3335] have linked the ${\mathscr{Y}}$ polynomials to the Hirota D operators as
$ \begin{eqnarray}{{\mathscr{Y}}}_{{mx},{nt}}\left[p=\mathrm{ln}\left(\displaystyle \frac{f}{g}\right),q=\mathrm{ln}\left({fg}\right)\right]={\left({fg}\right)}^{-1}{D}_{x}^{m}{D}_{t}^{n}f\cdot g,\end{eqnarray}$
where f(x, t) and g(x, t) are the ${C}^{\infty }$ functions of x and t, while Dx and Dt are the Hirota D operators defined by
$ \begin{eqnarray}\begin{array}{l}{D}_{x}^{m}{D}_{t}^{n}f(x,t)\cdot g(x,t)\\ \equiv \,{\left(\displaystyle \frac{\partial }{\partial x}-\displaystyle \frac{\partial }{\partial x^{\prime} }\right)}^{m}\,{\left.{\left(\displaystyle \frac{\partial }{\partial t}-\displaystyle \frac{\partial }{\partial t^{\prime} }\right)}^{n}f(x,t)g(x^{\prime} ,t^{\prime} )\right|}_{x^{\prime} =x,t^{\prime} =t},\end{array}\end{eqnarray}$
with $x^{\prime} $ and $t^{\prime} $ being the formal variables.
Hereby, through the binary Bell polynomials, we need to work out the bilinear forms and N solitons for system (1).
To begin with, what is reported in [19] can be considered as a special case of our results in this part.
Similar to the work in [36, 37], the scaling transformation,

$ \begin{eqnarray*}\begin{array}{l}x\to \varphi x,\quad t\to {\varphi }^{2}t,\quad \beta \to {\varphi }^{0}\beta ,\\ u\to {\varphi }^{-1}u,\quad v\to {\varphi }^{-2}v,\end{array}\end{eqnarray*}$

leads to our assumptions

$ \begin{eqnarray}u(x,t)={{\rm{\Upsilon }}}_{1}\,{p}_{x}(x,t),\,\end{eqnarray}$
$ \begin{eqnarray}v(x,t)={{\rm{\Upsilon }}}_{2}\,{p}_{{xx}}(x,t)+{{\rm{\Upsilon }}}_{3}\,{q}_{{xx}}(x,t)+\sigma ,\end{eqnarray}$
where ϒ1, ϒ2, ϒ3 and Σ are all the real constants. With the substitution of assumptions (8) and the assumptions that

$ \begin{eqnarray*}{{\rm{\Upsilon }}}_{3}=2{{\rm{\Upsilon }}}_{1}^{2},\quad {{\rm{\Upsilon }}}_{2}=(1-\beta ){{\rm{\Upsilon }}}_{1}\quad \mathrm{and}\quad {{\rm{\Upsilon }}}_{1}=\pm \displaystyle \frac{1}{2}\end{eqnarray*}$

back into system (1), Bell-polynomial procedure and symbolic computation help us to reduce assumptions (8) to
$ \begin{eqnarray}u(x,t)=\pm \displaystyle \frac{1}{2}{p}_{x}(x,t),\,\end{eqnarray}$
$ \begin{eqnarray}v(x,t)=\pm \displaystyle \frac{1-\beta }{2}{p}_{{xx}}(x,t)+\displaystyle \frac{1}{2}{q}_{{xx}}(x,t)+\sigma ,\end{eqnarray}$
and then to convert system (1) into two sets of the coupled systems of the ${\mathscr{Y}}$ polynomials:
$ \begin{eqnarray}\pm \displaystyle \frac{1}{2}{{\mathscr{Y}}}_{2x}(p,q)-{{\mathscr{Y}}}_{t}(p)=0,\,\end{eqnarray}$
$ \begin{eqnarray}\pm 2{{\mathscr{Y}}}_{x,t}(p,q)-{{\mathscr{Y}}}_{3x}(p,q)-4\sigma {{\mathscr{Y}}}_{x}(p)=0\ .\end{eqnarray}$
Further, with
$ \begin{eqnarray}p(x,t)=\mathrm{ln}\left[\displaystyle \frac{f(x,t)}{g(x,t)}\right],\,\end{eqnarray}$
$ \begin{eqnarray}q(x,t)=\mathrm{ln}\left[f(x,t)g(x,t)\right],\end{eqnarray}$
we transform system (1), through systems (10), into the following two branches of bilinear forms with the binary Bell polynomials:
$ \begin{eqnarray}\left(\pm \displaystyle \frac{1}{2}{D}_{x}^{2}-{D}_{t}\right)f\cdot g=0,\,\end{eqnarray}$
$ \begin{eqnarray}\left(\pm 2{D}_{x}{D}_{t}-{D}_{x}^{3}-4\sigma {D}_{x}\right)f\cdot g=0\ .\end{eqnarray}$
The reason for the existence of two branches of bilinear forms (12) is that there appear the ‘±’ signs.
It is noted that bilinear forms (12) are different from those in [15, 19].
Expanding f(x, t) and g(x, t) in bilinear forms (12) with respect to a small parameter ε as
$ \begin{eqnarray}f(x,t)=1+\displaystyle \sum _{\varsigma =1}^{N}{\epsilon }^{\varsigma }{f}_{\varsigma }(x,t),\,\end{eqnarray}$
$ \begin{eqnarray}g(x,t)=1+\displaystyle \sum _{\varpi =1}^{N}{\epsilon }^{\varpi }{g}_{\varpi }(x,t),\end{eqnarray}$
and then setting ε = 1, we obtain the N-soliton solutions for system (1) as
$ \begin{eqnarray}\left.\begin{array}{l}u(x,t)=\\ v(x,t)=\end{array}\right\}\ \mathrm{expressions}\ (9)\ \mathrm{and}\ (11),\mathrm{with}\,\end{eqnarray}$
$ \begin{eqnarray}\begin{array}{rcl}f(x,t) & \,= & \displaystyle \sum _{{\mu }_{i},{\mu }_{j}=0,1}\exp \left[\displaystyle \sum _{i=1}^{N}{\mu }_{i}({\lambda }_{i}x+{\tau }_{i}t+{\omega }_{i})\right.\\ & & +\,\left.\displaystyle \sum _{1\leqslant i\lt j}^{(N)}{\mu }_{i}{\mu }_{j}{\delta }_{{ij}}\right],\end{array}\end{eqnarray}$
$ \begin{eqnarray}\begin{array}{rcl}g(x,t) & \,= & \displaystyle \sum _{{\mu }_{i},{\mu }_{j}=0,1}\exp \left[\displaystyle \sum _{i=1}^{N}{\mu }_{i}({\lambda }_{i}x+{\tau }_{i}t+{\kappa }_{i})\right.\\ & & +\,\left.\displaystyle \sum _{1\leqslant i\lt j}^{(N)}{\mu }_{i}{\mu }_{j}{\delta }_{{ij}}\right],\end{array}\end{eqnarray}$
$ \begin{eqnarray}{{\rm{e}}}^{{\delta }_{{ij}}}\,={\left(\displaystyle \frac{\sqrt{{a}_{i}{b}_{j}}-\sqrt{{a}_{j}{b}_{i}}}{\sqrt{{a}_{i}{a}_{j}}-\sqrt{{b}_{i}{b}_{j}}}\right)}^{2},\,\end{eqnarray}$
$ \begin{eqnarray}{{\rm{e}}}^{{\omega }_{i}}\,={a}_{i},\,\end{eqnarray}$
$ \begin{eqnarray}{{\rm{e}}}^{{\kappa }_{i}}\,={b}_{i},\,\end{eqnarray}$
$ \begin{eqnarray}{\tau }_{i}\,=\pm \displaystyle \frac{({a}_{i}+{b}_{i}){\lambda }_{i}^{2}}{2({a}_{i}-{b}_{i})},\,\end{eqnarray}$
$ \begin{eqnarray}{\lambda }_{i}\,=({a}_{i}-{b}_{i})\sqrt{\displaystyle \frac{\sigma }{{a}_{i}{b}_{i}}},\,\end{eqnarray}$
ς, ϖ, i and j being the positive integers with ς ≤ N, ϖ ≤ N, i ≤ N and j ≤ N, ωi's and κi's denoting the real constants, ${f}_{\varsigma }(x,t)$'s and ${g}_{\varpi }(x,t)$'s being all the real differentiable functions of x and t, ai and bi representing the parameters characterizing the i-th soliton, ai Σ > 0, bi Σ > 0, the sum ${\sum }_{{\mu }_{i},{\mu }_{j}=0,1}$ taken over all the possible combinations of μj = 0,1 while ${\sum }_{1\leqslant i\lt j}^{(N)}$ being the summation over all the possible pairs chosen from the N elements under the condition i < j.
It is noted that there exist two branches of N-soliton solutions (14) because of the ‘±’ signs. Both of the branches are dependent on β, the water-wave dispersive power.
It is also noted that N-soliton solutions (14) are different from those in [1519].
Our next goal should be auto-Bäcklund transformations (17)–(25), which are different from those reported in [16], and the relevant soliton features for system (1), to be seen below.
For system (1), we need to consider the Painlevé expansions in the form of the generalized Laurent series [38, 39] (and references therein), i.e.
$ \begin{eqnarray}u(x,t)={\phi }^{-{\rm{\Xi }}}(x,t)\displaystyle \sum _{\xi =0}^{\infty }{u}_{\xi }(x,t){\phi }^{\xi }(x,t),\end{eqnarray}$
$ \begin{eqnarray}v(x,t)={\phi }^{-{ \mathcal X }}(x,t)\displaystyle \sum _{\chi =0}^{\infty }{v}_{\chi }(x,t){\phi }^{\chi }(x,t),\end{eqnarray}$
and to balance the powers of φ at the lowest orders, so as to get
$ \begin{eqnarray}{ \mathcal X }=2,\qquad {\rm{\Xi }}=1,\end{eqnarray}$
where ξ and ${ \mathcal X }$ are the natural numbers, uξ's, vχ's and φ are all the analytic functions with ${u}_{0}\ne 0$, ${v}_{0}\ne 0$ and ${\phi }_{x}\ne 0$.
With symbolic computation, we will truncate Painlevé expansions (15) at the constant level terms [38, 39], as
$ \begin{eqnarray}u(x,t)=\displaystyle \frac{{u}_{0}(x,t)}{\phi (x,t)}+{u}_{1}(x,t),\end{eqnarray}$
$ \begin{eqnarray}v(x,t)=\displaystyle \frac{{v}_{0}(x,t)}{{\phi }^{2}(x,t)}+\displaystyle \frac{{v}_{1}(x,t)}{\phi (x,t)}+{v}_{2}(x,t),\,\end{eqnarray}$
and substitute expansions (17) into system (1). Then, we require that the coefficients of like powers of φ vanish, and see the Painlevé–Bäcklund equations:
$ \begin{eqnarray}\,{v}_{0}=\displaystyle \frac{\pm (\beta -1)-1}{2}{\phi }_{x}^{2},\,\end{eqnarray}$
$ \begin{eqnarray}\,\,{u}_{0}=\pm \displaystyle \frac{{\phi }_{x}}{2},\,\end{eqnarray}$
$ \begin{eqnarray}\,{v}_{1}=\pm \displaystyle \frac{2{\phi }_{t}-4{\phi }_{x}{u}_{1}-(\beta -1){\phi }_{{xx}}}{2},\,\end{eqnarray}$
$ \begin{eqnarray}\,\pm {\phi }_{{xx}}+4{\phi }_{x}{u}_{1}-2{\phi }_{t}=0,\end{eqnarray}$
$ \begin{eqnarray}\,\begin{array}{l}\pm 4\beta {\phi }_{x}^{2}{u}_{1,x}\mp 4{\phi }_{x}^{2}{u}_{1,x}\pm 16{\phi }_{x}{\phi }_{t}{u}_{1}\\ \mp \,16{\phi }_{x}^{2}{u}_{1}^{2}\pm 4{\phi }_{x}^{2}{v}_{2}\mp 4{\phi }_{t}^{2}\pm 3{\phi }_{{xx}}^{2}\\ \pm 4{\phi }_{x}{\phi }_{{xxx}}+12{\phi }_{x}^{2}{u}_{1,x}+24{\phi }_{x}{\phi }_{{xx}}{u}_{1}\\ -\,4{\phi }_{{xx}}{\phi }_{t}-8{\phi }_{x}{\phi }_{{xt}}=0,\end{array}\end{eqnarray}$
$ \begin{eqnarray}\begin{array}{l}\,4\beta {\phi }_{{xx}}{u}_{1,x}+4\beta {\phi }_{x}{u}_{1,{xx}}\\ \,\,\,-\,32{\phi }_{x}{u}_{1,x}{u}_{1}+8{\phi }_{x}{u}_{1,t}+8{\phi }_{t}{u}_{1,x}-4{\phi }_{{xx}}{u}_{1,x}\\ \,\,\,-\,4{\phi }_{x}{u}_{1,{xx}}-16{\phi }_{{xx}}{u}_{1}^{2}+16{\phi }_{{xt}}{u}_{1}+4{\phi }_{x}{v}_{2,x}\\ \,\,+\,4{\phi }_{{xx}}{v}_{2}-4{\phi }_{{tt}}+{\phi }_{{xxxx}}=0,\end{array}\end{eqnarray}$
$ \begin{eqnarray}\,{u}_{1,t}=\displaystyle \frac{\beta -1}{2}{u}_{1,{xx}}+2{u}_{1}{u}_{1,x}+\displaystyle \frac{1}{2}{v}_{2,x},\,\end{eqnarray}$
$ \begin{eqnarray}\,{v}_{2,t}=\left(1-\displaystyle \frac{\beta }{2}\right)\beta {u}_{1,{xxx}}+2{\left({u}_{1}{v}_{2}\right)}_{x}+\displaystyle \frac{1-\beta }{2}{v}_{2,{xx}}.\end{eqnarray}$
Hereby, u1(x, t) and v2(x, t) can be treated as the seed solutions for system (1) [38, 39]. The sets of equations (17)–(25) constitute two auto-Bäcklund transformations, since there exist the ‘±’ signs, and the whole sets are mutually consistent, or, explicitly solvable with respect to φ(x, t), u0(x, t), u1(x, t), v0(x, t), v1(x, t) and v2(x, t), to be seen right below.
Each of auto-Bäcklund transformations (17)–(25) works as a system of equations relating a set of the solutions of system (1), e.g. one set of solutions (27) or (28), to another set of the solutions of system (1) itself. Therefore, we could, in principle at least, be able to progressively construct more and more complicated solutions of system (1).
Each of auto-Bäcklund transformations (17)–(25) is dependent on β, the water-wave dispersive power.
We will try to find the explicitly-solvable soliton examples, assuming that
$ \begin{eqnarray}\left\{\begin{array}{l}\phi (x,t)={{\rm{e}}}^{{\zeta }_{1}(t)x+{\zeta }_{2}(t)}+1,\\ {u}_{1}(x,t)={\zeta }_{3}(t)+{\zeta }_{4}(t)x,\\ {v}_{2}(x,t)={\zeta }_{5}(t)+{\zeta }_{6}(t)x+{\zeta }_{7}(t){x}^{2},\end{array}\right.\end{eqnarray}$
where ζl(t)'s (l = 1, ..., 7) are the real differentiable functions, with ${\zeta }_{1}(t)\ne 0$ since ${\phi }_{x}\ne 0$.
With symbolic computation, we substitute assumptions (26) into equations (18)–(25), and work out
$ \begin{eqnarray*}\begin{array}{l}{\zeta }_{7}(t)=\displaystyle \frac{{[{\zeta }_{1}^{\prime} (t)-2{\zeta }_{1}(t){\zeta }_{4}(t)]}^{2}}{{\zeta }_{1}{(t)}^{2}}\end{array}\end{eqnarray*}$
with the “′” sign denoting the derivative, with respect to t. There exist two cases, ζ1(t) ≠ constant or ζ1(t) = constant.
Case (1):  ${\zeta }_{1}(t)\,\ne $ constant
$ \begin{eqnarray*}\begin{array}{r}\\ {\zeta }_{1}(t)= {\zeta }_{8}\,{{\rm{e}}}^{2\displaystyle \int {\zeta }_{4}(t){\rm{d}}{t}},\\ {\zeta }_{4}(t) = \displaystyle \frac{1}{{\zeta }_{9}-2t}\ {\rm{with}}\ {\zeta }_{9}-2t\ne 0,\\ {\zeta }_{6}(t) = 0,\\ {\zeta }_{3}(t) = \displaystyle \frac{{\rho }_{1}}{{\zeta }_{9}-2t},\\ {\zeta }_{5}(t) = \displaystyle \frac{{\rho }_{2}}{{\zeta }_{9}-2t},\\ {\zeta }_{2}(t) = \displaystyle \frac{{\zeta }_{8}(4{\rho }_{1}\pm {\zeta }_{8})}{4({\zeta }_{9}-2t)}+{2\rho }_{3},\\ {\rho }_{2} = 1-\beta \pm 1,\end{array}\end{eqnarray*}$

where ${\zeta }_{8}\ne 0$, ζ9, ρ1, ρ2 and ρ3 are all the real constants.
Computing with expressions (17) as well, we can obtain the following β-dependent soliton solutions of system (1):
$ \begin{eqnarray}\begin{array}{rcl}u(x,t) & = & \pm \displaystyle \frac{{\zeta }_{8}}{4({\zeta }_{9}-2t)}\,\\ & & \times \mathrm{Tanh}\,\left[\displaystyle \frac{{\zeta }_{8}x}{2({\zeta }_{9}-2t)}+\displaystyle \frac{{\zeta }_{8}(4{\rho }_{1}\pm {\zeta }_{8})}{8({\zeta }_{9}-2t)}+{\rho }_{3}\right]\\ & & +\,\displaystyle \frac{x}{{\zeta }_{9}-2t}+\displaystyle \frac{4{\rho }_{1}\pm {\zeta }_{8}}{4({\zeta }_{9}-2t)},\end{array}\end{eqnarray}$
$ \begin{eqnarray}\begin{array}{rcl}\quad v(x,t) & = & \displaystyle \frac{{\zeta }_{8}^{2}(\pm \beta \mp 1-1)}{8{\left({\zeta }_{9}-2t\right)}^{2}}\,\\ & & \times {\mathrm{Tanh}}^{2}\,\left[\displaystyle \frac{{\zeta }_{8}x}{2({\zeta }_{9}-2t)}+\displaystyle \frac{{\zeta }_{8}(4{\rho }_{1}\pm {\zeta }_{8})}{8({\zeta }_{9}-2t)}+{\rho }_{3}\right]\\ & & +\,\displaystyle \frac{{\zeta }_{8}^{2}(1\mp \beta \pm 1)+8(1-\beta \pm 1)({\zeta }_{9}-2t)}{8{\left({\zeta }_{9}-2t\right)}^{2}}.\end{array}\end{eqnarray}$
There exist two branches of those solutions because of the ‘±’ signs.
Case (2): ζ1(t) = η1 = non-zero constant
Similarly, we can obtain the following β-dependent solitonic solutions of system (1):
$ \begin{eqnarray}\begin{array}{rcl}u(x,t) & = & \pm \displaystyle \frac{{\eta }_{1}}{4}\,\mathrm{Tanh}\left[\displaystyle \frac{{\eta }_{1}x}{2}+\displaystyle \frac{{\eta }_{1}\left(4{\eta }_{2}\pm {\eta }_{1}\right)t}{4}+\displaystyle \frac{{\eta }_{3}}{2}\right]\\ & & +\,{\eta }_{2}\pm \displaystyle \frac{{\eta }_{1}}{4},\,\end{array}\end{eqnarray}$
$ \begin{eqnarray}\begin{array}{rcl}v(x,t) & = & \displaystyle \frac{{\eta }_{1}^{2}(\pm \beta \mp 1-1)}{8}\,\\ & & \times \,{\mathrm{Tanh}}^{2}\,\left[\displaystyle \frac{{\eta }_{1}x}{2}+\displaystyle \frac{{\eta }_{1}\left(4{\eta }_{2}\pm {\eta }_{1}\right)t}{4}+\displaystyle \frac{{\eta }_{3}}{2}\right]\\ & & -\,\displaystyle \frac{{\eta }_{1}^{2}(\pm \beta \mp 1-1)}{8},\,\end{array}\end{eqnarray}$
where η2 and η3 are also the real constants. There exist two branches of those solutions because of the ‘±’ signs.
Right now, let us finish up the paper. Water has been known as a constant reminder that life repeats and the only element that has a visible cycle. The water cycle has been believed to result in the distribution of water on land surface, to purify water, to support plant growth, to facilitate agriculture and to sustain aquatic ecosystem. Water waves have been seen as one of the most common phenomena in nature, the studies of which help the energy development, marine/offshore engineering, hydraulic engineering, mechanical engineering, etc. Hereby, on system (1), the Boussinesq–Burgers system for the shallow water waves in a lake or near an ocean beach, symbolic computation has been performed. For u(x, t), the water-wave horizontal velocity, and v(x, t), the height of the water surface above the bottom, two sets of the bilinear forms through the binary Bell polynomials, i.e. bilinear forms (12), and N-soliton solutions (14) have been worked out, while two sets of auto-Bäcklund transformations (17)–(25) have been constructed together with solitonic solutions (27) and (28). It has been noted that bilinear forms (12), N-soliton solutions (14) and Bäcklund transformations (17)–(25) are different from those in the existing literatures. All of our results have been shown to be dependent on β, the water-wave dispersive power.

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Nature Science Foundation of China under Grant No. 11871116 and Fundamental Research Funds for the Central Universities of China under Grant No. 2019XD-A11.

1
Cooper E J 2020 Northwest Sci. 94 70

DOI

Alejandra Moreno M 2020 Food Hydrocolloid. 107 105973

DOI

Su J J Gao Y T Deng G F Jia T T 2019 Phys. Rev. E 100 042210

DOI

Deng G F Gao Y T Su J J Ding C C 2019 Appl. Math. Lett. 98 177

DOI

Jia T T Gao Y T Deng G F Hu L 2019 Nonlinear Dyn. 98 269

DOI

Feng Y J Gao Y T Li L Q Jia T T 2020 Applicable Anal. accepted

DOI

2
Hethnawi A 2020 Colloids Surf. A 597 124814

DOI

Mhawej M Fadel A Faour G 2020 Int. J. Remote Sen. 41 5321

DOI

Wang M Tian B Sun Y Zhang Z 2020 Comput. Math. Appl. 79 576

DOI

Hu C C Tian B Wu X Y Yuan Y Q Du Z 2018 Eur. Phys. J. Plus 133 40

DOI

Chen Y Q Tian B Qu Q X Li H Zhao X H Tian H Y Wang M 2020 Mod. Phys. Lett. B accepted

DOI

Chen Y Q Tian B Qu Q X Li H Zhao X H Tian H Y Wang M 2020 Int. J. Mod. Phys. B accepted JPB20076387

3
Sowmya G Gireesha B J Sindhu S Prasannakumara B C 2020 Commun. Theor. Phys. 72 025004

DOI

Jia T T Gao Y T Feng Y J Hu L Su J J Li L Q Ding C C 2019 Nonlinear Dyn. 96 229

DOI

Hu S H Tian B Du X X Liu L Zhang C R 2019 Pramana—J. Phys. 93 38

DOI

4
Khater M M Lu D C Attia R A Inc M 2019 Commun. Theor. Phys. 71 1267

DOI

Feng Y J Gao Y T Jia T T Li L Q 2019 Mod. Phys. Lett. B 33 1950354

DOI

Yuan Y Q Tian B Qu Q X Zhao X H Du X X 2020 Z. Angew. Math. Phys. 71 46

DOI

5
Kumar R Kumar R Koundal R Shehzad S A Sheikholeslami M 2019 Commun. Theor. Phys. 71 779

DOI

Hu L Gao Y T Jia S L Su J J Deng G F 2019 Mod. Phys. Lett. B 33 1950376

DOI

Su J J Gao Y T Ding C C 2019 Appl. Math. Lett. 88 201

DOI

6
Bona J L Colin T Guillope C 2019 Discrete Cont. Dyn. Syst. 39 5543

DOI

Ding C C Gao Y T Deng G F 2019 Nonlinear Dyn. 97 2023

DOI

Deng G F Gao Y T Su J J Ding C C Jia T T 2020 Nonlinear Dyn. 99 1039

DOI

7
Congy T El G A Hoefer M A 2019 J. Fluid Mech. 875 1145

DOI

8
Roy R De S Mandal B N 2019 Appl. Math. Comput. 355 458

DOI

Roy R De S Mandal B N 2019 Fluid Dyn. Res. 51 045508

DOI

9
Hu C C Tian B Yin H M Zhang C R Zhang Z 2019 Comput. Math. Appl. 78 166

DOI

Wang M Tian B Qu Q X Du X X Zhang C R Zhang Z 2019 Eur. Phys. J. Plus 134 578

DOI

10
Eeltink D Armaroli A Ducimetiere Y M Kasparian J Brunetti M 2019 Phys. Rev. E 100 013102

DOI

11
Yin H M Tian B Zhao X H 2020 Appl. Math. Comput. 368 124768

DOI

Chen S S Tian B Sun Y Zhang C R 2020 Ann. Phys. 531 1900011

DOI

Ding C C Gao Y T Li L Q 2019 Chaos Solitons Fractals 120 259

DOI

12
Du Z Tian B Chai H P Zhao X H 2020 Appl. Math. Lett. 102 106110

DOI

Du X X Tian B Qu Q X Yuan Y Q Zhao X H 2020 Chaos Solitons Fractals 134 109709

DOI

Li L Q Gao Y T Hu L Jia T T Ding C C Feng Y J 2020 Nonlinear Dyn. 100 2729

DOI

13
Zhang C R Tian B Qu Q X Liu L Tian H Y 2020 Z. Angew. Math. Phys. 71 18

DOI

Hu S H Tian B Du X X Du Z Wu X Y 2019 J. Comput. Nonlin. Dyn. 14 111001

DOI

Yuan Y Q Tian B Qu Q X Zhang C R Du X X 2020 Nonlinear Dyn. 99 3001

DOI

14
Geng X G Wu Y T 1999 J. Math. Phys. 40 2971

DOI

15
Li M Hu W K Wu C F 2018 Nonlinear Dyn. 94 1291

DOI

16
Dong M J Tian S F Yan X W Zhang T T 2019 Nonlinear Dyn. 95 273

DOI

17
Xu R 2008 Commun. Theor. Phys. 50 579

DOI

18
Mei J Ma Z 2013 Appl. Math. Comput. 219 6163

19
Zhang C C Chen A H 2016 Appl. Math. Lett. 58 133

DOI

20
Kupershmidt B A 1985 Commun. Math. Phys. 99 51

DOI

21
Kawamoto S 1984 J. Phys. Soc. Jpn. 53 469

DOI

22
Wazwaz A M 2017 Filomat 31 831

DOI

23
Hu J Xu Z W Yu G F 2016 Appl. Math. Lett. 62 76

DOI

24
Rady A S Osman E S Khalfallah M 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1172

DOI

25
Gu Z Q 1990 J. Math. Phys. 31 1374

DOI

26
Wang P Tian B Liu W J Lv X Jiang Y 2011 Appl. Math. Comput. 218 1726

DOI

27
Wang Y H 2014 Appl. Math. Lett. 38 100

DOI

28
Roshid H O Rahman M A 2014 Results Phys. 4 150

DOI

Zhang Y F Feng B L 2011 Commun. Nonlinear Sci. Numer. Simul. 16 3045

DOI

29
Chen S S Tian B Liu L Yuan Y Q Zhang C R 2019 Chaos Solitons Fractals 118 337

DOI

Du Z Tian B Qu Q X Wu X Y Zhao X H 2020 Appl. Numer. Math. 153 179

DOI

Yin H M Tian B Zhao X C 2020 J. Magn. Magn. Mater. 495 165871

DOI

Du X X Tian B Yuan Y Q Du Z 2019 Ann. Phys. Berlin 531 1900198

DOI

Zhang C R Tian B Y. Sun Yin H M 2019 EPL 127 40003

DOI

Zhao X Tian B Qu Q X Yuan Y Q Du X X Chu M X 2020 Mod. Phys. Lett. B accepted

DOI

30
Bell E T 1934 Ann. Math. 35 258

DOI

31
Lambert F Loris I Springael J Willox R 1994 J. Phys. A: Math. Gen. 27 5325

DOI

32
Wang Y F Tian B Jiang Y 2017 Appl. Math. Comput. 292 448

DOI

33
Matveev V B Salle M A 1991 Darboux Transformations and Solitons Berlin Springer

34
Wadati M 1975 J. Phys. Soc. Jpn. 38 673

DOI

35
Caruello F Tabor M 1989 Physica D 39 77

DOI

36
Lambert F Springael J 2001 Chaos Solitons Fractals 12 2821

DOI

37
Lambert F Springael J 2008 Acta Appl. Math. 102 147

DOI

38
Gao X Y Guo Y J Shan W R 2020 Appl. Math. Lett. 104 106170

DOI

39
Gao X Y 2019 Appl. Math. Lett. 91 165

DOI

Outlines

/