$\left(\overline{X},\overline{Y}\right)$ stationary co-ordinates | |
| $\left(\overline{x},\overline{y}\right)$ moving co-ordinates |
| $\left(\overline{W},\overline{V}\right)$ velocity components in laboratory frames |
| $\left(\overline{w},\overline{v}\right)$ velocity components in wave frames |
| $\overline{T}$ dimensional temperature |
| $\overline{C}$ dimensional temperature |
| $\overline{{T}_{0}}$ reference temperature |
| $\overline{{C}_{0}}$reference concentration |
| $a$ dimension of the wall |
| $b$amplitude |
| $t$time of fluid flow |
| $m$non-uniformity parameter |
| $p$ pressure |
| $g$ gravity |
| ${k}_{T}$ thermal diffusivity |
Re Reynolds number | |
$Ec$ Eckert number | |
Pr Prandtl number | |
$N$ Brinkmann number | |
$Sc$ Schmidt number | |
$Sr$ Soret number | |
$Mn$ magnetic field parameter | |
$k$ thermal conductivity | |
$F$ body force parameter | |
$B$ strength of applied magnetic field | |
${E}_{1}$ wall tension parameter | |
${E}_{2}$ mass characterizing parameter | |
${E}_{3}$ wall damping parameter | |
Greek symbols |
|
$\varepsilon $ amplitude ratio | |
$\sigma $ dimensionless concentration | |
$\theta $ dimensionless temperature | |
$\psi $ stream function | |
$\mu $ viscosity | |
$\nu $ kinematic viscosity | |
$\rho $ density | |
$\delta $ specific heat at constant volume | |
$\zeta $ electrical conductivity | |
$\alpha $ velocity slip parameter | |
${\alpha }_{1}$ temperature slip parameter | |
${\alpha }_{2}$ concentration slip parameter | |
$\beta $ variable viscosity | |
$\gamma $ variable thermal conductivity | |
${\tau }_{0}$ yield stress parameter | |
${\tau }_{xx},{\tau }_{xy},{\tau }_{yy}$ extra stress components | |
${\eta }_{1}$ mass per unit area | |
${\eta }_{2}$ wall damping force coefficient | |
$\tau $ elastic tension |
1. Introduction
2. Mathematical formulation
Figure 1. The geometry of the physical model. |
3. Methodology of the solution
3.1. Perturbation solution
3.1.1. Zeroth order system
3.1.2. First order system
4. Results and discussions
4.1. Velocity profiles
Figure 2. Velocity profile for different values of (a) |
4.2. Temperature profiles
Figure 3. Temperature profile for different values of, (a) γ, (b) N, (c) α 1, (d) α, (e) τ 0, (f) Mn (g) φ with β = 0.1, F = 0.2, E 1 = 0.1, E 2 = 0.04, E 3 = 0.4, m = 0.2, x = 0.2, t 1 = 0.1, ε = 0.6, φ = π/6. |
4.3. Concentration profiles
Figure 4. Concentration profile for different values of (a) α 2, (b) Sc, (c) Sr, (d) α, (e) Mn, (f) α 1, (g) N, (h) τ 0 (i) φ with γ = 0.1, β = 0.1, F = 0.2, E 1 = 0.1, E 2 = 0.04, E 3 = 0.4, m = 0.2, x = 0.2, t 1 = 0.1, ε = 0.6. |
4.4. Skin-friction coefficient
Figure 5. Skin-friction coefficient for different values of, (a) α, (b) Mn, (c) τ 0, (d) β, (e) F with E 1 = 0.1, E 2 = 0.04, E 3 = 0.4, m = 0.2, x = 0.2, t 1 = 0.1, ε = 0.6, φ = π/6. |
4.5. Nusselt number
Figure 6. Nusselt number for different values of, (a) Mn, (b) N, (c) γ, (d) τ 0, (e) F, with α 1 = 0.1, α = 0.01, β = 0.1, E 1 = 0.1, E 2 = 0.04, E 3 = 0.4, m = 0.2, x = 0.2, t 1 = 0.1, ε = 0.6, φ = π/6. |
4.6. Sherwood number
Figure 7. Sherwood number for different values of (a) Mn, (b) Sc, (c) Sr, (d) τ 0, (e) N, (f) F with γ = 0.1, α 2 = 0.01, α = 0.01, α 1 = 0.1, β = 0.1, E 1 = 0.1, E 2 = 0.04, E 3 = 0.4, m = 0.2, x = 0.2, t 1 = 0.1, ε = 0.6, φ = π/6. |
4.7. Trapping phenomena
Figure 8. Streamline for different values of β with α = 0.01, τ 0 = 0.1, Mn = 1, F = 2, E 1 = 0.1, E 2 = 0.04, E 3 = 0.4, m = 0.2, x = 0.2, t 1 = 0.1, ε = 0.6, φ = π/6. |
Figure 9. Streamline for different values of α with τ 0 = 0.1, β = 0.1, Mn = 1, F = 2, E 1 = 0.1, E 2 = 0.04, E 3 = 0.4, m = 0.2, x = 0.2, t 1 = 0.1, ε = 0.6, φ = π/6. |
Figure 10. Streamline for different values of Mn with α = 0.01, τ 0 = 0.1, β = 0.4, F = 2, E 1 = 0.1, E 2 = 0.04, E 3 = 0.4, m = 0.2, x = 0.2, t 1 = 0.1, ε = 0.6, φ = π/6. |
Figure 11. Streamline for different values of τ 0 with α = 0.01, β = 0.1, Mn = 1, F = 2, E 1 = 0.1, E 2 = 0.04, E 3 = 0.4, m = 0.2, x = 0.2, t 1 = 0.1, ε = 0.6, φ = π/6. |
5. Conclusion
• | An increase in the value of the yield stress parameter diminishes the velocity of the flow while decrease in variable viscosity hikes the fluid flow. |
• | The temperature of the fluid increases for a significant value of variable viscosity, thermal conductivity, temperature slip parameter. |
• | The concentration is an increasing function of the magnetic parameter and Brinkmann’s number. |
• | The consideration of variable viscosity and velocity slip parameter enhances the skin friction parameter. |
• | The presence of convective conditions at the boundary diminishes the Nusselt number. |
• | TAn increment in the magnetic parameter increases the Sherwood number. |
• | The presence of magnetic field and variable viscosity increases the trapped bolus volume efficiently. |