1. Introduction
2. Preliminaries
The Caputo fractional derivative of $f\in {C}_{-1}^{n}$ is presented as
The LT for a Caputo fractional derivative ${{D}}_{t}^{\alpha }f\left(t\right)$ is presented as below
3. Solution for FEFK equation
4. Numerical results and discussion
In this case, we consider the fractional mCH equation and defined as follows
In this case, we consider the fractional mDP equation and defined as follows
Figure 1. Behaviour of the achieved solution for (a) obtained, (b) exact and (c) absolute error for the mCH equation at $\hslash =-1,\,n=1$ and $\alpha =1.$ |
Figure 2. Response of the achieved solution for equation considered in Case I at $n=1,\hslash =-1$ and $t=0.1.$ |
Figure 3. $\hslash $-curves for $v\left(x,\,t\right)$ defined in Case I with distinct $\alpha $ at $x=5$ and $t=0.01$ with $\left({\rm{a}}\right)\,n=1$ and $\left({\rm{b}}\right)\,n=2.$ |
Figure 4. Surface of the achieved solution for (a) obtained, (b) exact and (c) absolute error for the mDP equation at $\hslash =-1,\,n=1$ and $\alpha =1.$ |
Figure 5. Response of the achieved solution for equation considered in Case II at $n=1,\hslash =-1$ and $t=0.01.$ |
Figure 6. $\hslash $-curves for $v\left(x,\,t\right)$ defined in Case II with distinct $\alpha $ at $x=2$ and $t=0.01$ with (a) n =1 and $\left({\rm{b}}\right)\,n=2.$ |
Table 1. Comparison study of obtained results for mCH equation and results achieved by HPM [19] at $\hslash =-1$ and $n=1.$ |
$t$ | $x$ | ${v}_{\left|\mathrm{HPM} \mbox{-} \mathrm{Exact}\right|}$ | ${v}_{\left|q \mbox{-} \mathrm{HATM} \mbox{-} \mathrm{Exact}\right|}$ |
---|---|---|---|
$0.05$ | $8$ | $2.80771\times {10}^{-4}$ | $2.78618\times {10}^{-4}$ |
$9$ | $1.03633\times {10}^{-4}$ | $5.86830\times {10}^{-4}$ | |
$10$ | $3.8170\times {10}^{-5}$ | $9.27737\times {10}^{-4}$ | |
$0.1$ | $8$ | $5.91138\times {10}^{-4}$ | $1.30477\times {10}^{-3}$ |
$9$ | $2.18174\times {10}^{-4}$ | $1.03341\times {10}^{-4}$ | |
$10$ | $8.03570\times {10}^{-5}$ | $2.17590\times {10}^{-4}$ | |
$0.15$ | $8$ | $9.34203\times {10}^{-4}$ | $3.43893\times {10}^{-4}$ |
$9$ | $3.44769\times {10}^{-4}$ | $4.83516\times {10}^{-4}$ | |
$10$ | $1.26982\times {10}^{-4}$ | $3.81314\times {10}^{-5}$ | |
$0.2$ | $8$ | $1.31339\times {10}^{-3}$ | $8.02785\times {10}^{-5}$ |
$9$ | $4.84685\times {10}^{-4}$ | $1.26863\times {10}^{-4}$ | |
$10$ | $1.78511\times {10}^{-4}$ | $1.78353\times {10}^{-4}$ |
Table 2. Comparison study of obtained results with different fractional operators for mDP equation and results achieved by HPM [19] at $\hslash =-1$ and $n=1.$ |
$t$ | $x$ | ${v}_{\left|\mathrm{HPM} \mbox{-} \mathrm{Exact}\right|}$ | ${v}_{\left|q \mbox{-} \mathrm{HATM} \mbox{-} \mathrm{Exact}\right|}$ |
---|---|---|---|
$0.05$ | $8$ | $3.33255\times {10}^{-4}$ | $3.30732\times {10}^{-4}$ |
$9$ | $1.23003\times {10}^{-4}$ | $7.05929\times {10}^{-4}$ | |
$10$ | $4.53050\times {10}^{-5}$ | $1.13149\times {10}^{-3}$ | |
$0.1$ | $8$ | $7.10978\times {10}^{-4}$ | $1.61409\times {10}^{-3}$ |
$9$ | $2.62396\times {10}^{-4}$ | $1.22660\times {10}^{-4}$ | |
$10$ | $9.66440\times {10}^{-5}$ | $2.61711\times {10}^{-4}$ | |
$0.15$ | $8$ | $1.13907\times {10}^{-3}$ | $4.19332\times {10}^{-4}$ |
$9$ | $4.20359\times {10}^{-4}$ | $5.97992\times {10}^{-4}$ | |
$10$ | $1.54820\times {10}^{-4}$ | $4.52587\times {10}^{-5}$ | |
$0.2$ | $8$ | $1.62421\times {10}^{-3}$ | $9.65514\times {10}^{-5}$ |
$9$ | $5.99362\times {10}^{-4}$ | $1.54681\times {10}^{-4}$ | |
$10$ | $2.20743\times {10}^{-4}$ | $2.20558\times {10}^{-4}$ |