1. Introduction
2. Skew information-based coherence in autotensor of mutually unbiased bases (AMUBs)
• | (C1) (Faithfulness) C(ρ) ≥ 0 and C(ρ) = 0 iff ρ is incoherent. |
• | (C2) (Convexity) C(·) is convex in ρ. |
• | (C3) (Monotonicity) C(Λ(ρ)) ≤ C(ρ) for any incoherent operation Λ. |
• | (C4) (Strong monotonicity) C(·) does not increase on average under selective incoherent operations, i.e. $\begin{eqnarray*}C(\rho )\geqslant \displaystyle \sum _{n}{p}_{n}C({\varrho }_{n}),\end{eqnarray*}$ where ${p}_{n}=\mathrm{Tr}({K}_{n}\rho {K}_{n}^{\dagger })$ are probabilities and ${\varrho }_{n}=\tfrac{{K}_{n}\rho {K}_{n}^{\dagger }}{{p}_{n}}$ are the post-measurement states, Kn are incoherent Kraus operators. |
Figure 1. Surfaces of constant ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{1}}$: (a) ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{1}}=0.05;$ (b) ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{1}}=0.2;$ (c) ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{{a}_{1}}=1$. |
Figure 2. (a) ${C}_{{I}}{({\rho }^{{\rm{W}}})}_{{a}_{i}}(i=1,2,3)$ as a function of p; (b) ${C}_{{I}}{\left({\rho }^{\mathrm{iso}}\right)}_{{a}_{i}}(i=1,2,3)$ as a function of F. |
Figure 3. Surfaces of constant ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{a}$: (a) ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{a}=0.05;$ (b) ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{a}=0.2;$ (c) ${C}_{{I}}{\left({\rho }^{\mathrm{BD}}\right)}_{a}=1$. |
Figure 4. Surfaces of constant ${C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}}$ with fixed r and s: (a) $r=s=0.1,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}}=0.1;$ (b) $r=s=0.3,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}}=0.1;$ (c) $r=s=0.1,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}}=0.5;$ (d) $r=s=0.3,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{{a}_{1}}=0.5$. |
Figure 5. Surfaces of constant ${C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{a}$ with fixed r and s: (a) $r=s=0.1,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{a}=0.1;$ (b) $r=s=0.3,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{a}=0.1;$ (c) $r=s=0.1,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{a}=0.5;$ (d) $r=s=0.3,{C}_{{I}}{\left({\rho }_{z}^{{\rm{X}}}\right)}_{a}=0.5$. |
3. Skew information-based coherence under quantum channels
Table 1. Kraus operators for the quantum channels: bit flip (BF), phase flip (PF), bit-phase flip (BPF), and generalized amplitude damping (GAD), where p and γ are decoherence probabilities, $0\lt p\lt 1$, 0 < γ < 1. |
Channel | Kraus operators |
---|---|
BF | ${E}_{0}=\sqrt{1-p/2}I,\,\,\,{E}_{1}=\sqrt{p/2}{\sigma }_{1}$ |
PF | ${E}_{0}=\sqrt{1-p/2}I,\,\,\,{E}_{1}=\sqrt{p/2}{\sigma }_{3}$ |
BPF | ${E}_{0}=\sqrt{1-p/2}I,\,\,\,{E}_{1}=\sqrt{p/2}{\sigma }_{2}$ |
GAD | ${E}_{0}=\sqrt{p}\left(\begin{array}{cc}1 & 0\\ 0 & \sqrt{1-\gamma }\end{array}\right),\,\,\,{E}_{2}=\sqrt{1-p}\left(\begin{array}{cc}\sqrt{1-\gamma } & 0\\ 0 & 1\end{array}\right)$ |
${E}_{1}=\sqrt{p}\left(\begin{array}{cc}0 & \sqrt{\gamma }\\ 0 & 0\end{array}\right),\,\,\,{E}_{3}=\sqrt{1-p}\left(\begin{array}{cc}0 & 0\\ \sqrt{\gamma } & 0\end{array}\right)$ |
Table 2. Correlation coefficients with respect to the following channels: bit flip (BF), phase flip (PF), bit-phase flip (BPF), and generalized amplitude damping (GAD). For GAD, we have fixed p = 1/2 and replaced γ by p. |
Channel | ${c}_{1}^{{\prime} }$ | ${c}_{2}^{{\prime} }$ | ${c}_{3}^{{\prime} }$ |
---|---|---|---|
BF | ${c}_{1}$ | ${c}_{2}{(1-p)}^{2}$ | ${c}_{3}{(1-p)}^{2}$ |
PF | ${c}_{1}{(1-p)}^{2}$ | ${c}_{2}{(1-p)}^{2}$ | ${c}_{3}$ |
BPF | ${c}_{1}{(1-p)}^{2}$ | ${c}_{2}$ | ${c}_{3}{(1-p)}^{2}$ |
GAD | ${c}_{1}(1-p)$ | ${c}_{2}(1-p)$ | ${c}_{3}{(1-p)}^{2}$ |
Figure 6. Surfaces of constant CBF for bit flip channels with fixed p: (a) $p=0.05,{C}_{\mathrm{BF}}=0.05;$ (b) $p=0.05,{C}_{\mathrm{BF}}=0.4;$ (c) $p=0.6,{C}_{\mathrm{BF}}=0.05$. |
Figure 7. Surfaces of constant CPF for phase flip channels with fixed p: (a) $p=0.05,{C}_{\mathrm{PF}}=0.05;$ (b) $p=0.05,{C}_{\mathrm{PF}}=0.4;$ (c) p = 0.6, CPF = 0.05. |
Figure 8. Surfaces of constant CBPF for bit-phase flip channels with fixed p: (a) p = 0.05, CBPF = 0.05; (b) p = 0.05, CBPF = 0.4; (c) p = 0.6, CBPF = 0.05. |
Figure 9. Surfaces of constant CGAD for generalized amplitude damping channels with fixed p: (a) p = 0.05, CGAD = 0.05; (b) p = 0.05, CGAD = 0.4; (c) p = 0.6, CGAD = 0.05. |
Figure 10. CBF, CPF, CBPF and CGAD as a function of p: (a) ${c}_{1}=-0.2,{c}_{2}=0.6,{c}_{3}=0.6;$ (b) c1 = −0.6, c2 = 0.2, c3 = 0.2. |