Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Solitons and periodic waves for a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics

  • Dong Wang ,
  • Yi-Tian Gao ,
  • Cui-Cui Ding ,
  • Cai-Yin Zhang
Expand
  • Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

Author to whom any correspondence should be addressed.

Received date: 2020-03-12

  Revised date: 2020-05-08

  Accepted date: 2020-05-27

  Online published: 2020-11-09

Copyright

© 2020 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

Under investigation in this paper is a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics. Soliton and one-periodic-wave solutions are obtained via the Hirota bilinear method and Hirota–Riemann method. Magnitude and velocity of the one soliton are derived. Graphs are presented to discuss the solitons and one-periodic waves: the coefficients in the equation can determine the velocity components of the one soliton, but cannot alter the soliton magnitude; the interaction between the two solitons is elastic; the coefficients in the equation can influence the periods and velocities of the periodic waves. Relation between the one-soliton solution and one-periodic wave solution is investigated.

Cite this article

Dong Wang , Yi-Tian Gao , Cui-Cui Ding , Cai-Yin Zhang . Solitons and periodic waves for a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics[J]. Communications in Theoretical Physics, 2020 , 72(11) : 115004 . DOI: 10.1088/1572-9494/aba241

1. Introduction

The Kadomtsev–Petviashvili-type equations have been introduced to describe the water waves in long wavelengths with the weakly nonlinear restoring forces, waves in the ferromagnetic media and matter waves in the Bose–Einstein condensates [112], and have been applied to investigate the motion of the near-resonant wave humps in the near shore of Harilaid [13], long and rouge waves in the river Seven Ghosts [14], dynamics of the tsunamis generated by undersea earthquakes in the northern Indian Sea [15], and interaction/generation of the long-crested internal solitary waves in the South China Sea [16]. Methods to solve such equations have been proposed, including the Darboux transformation [1729], Bäcklund transformation [30, 31], Hirota bilinear method [3236], inverse scattering method [3739], multiple exp-function method [4043], similarity transformation [44], Kadomtsev–Petviashvili hierarchy reduction [4549], Hirota–Riemann method [5053] and Lie group analysis [5457].
In this paper, we will investigate a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics [58]
$ \begin{eqnarray}\begin{array}{l}{u}_{{xxxy}}+3{\left({u}_{x}{u}_{y}\right)}_{x}+\alpha {u}_{{xxxz}}+3\alpha {\left({u}_{x}{u}_{z}\right)}_{x}+{\zeta }_{1}{u}_{{xt}}\\ \quad +\,{\zeta }_{2}{u}_{{yt}}+{\zeta }_{3}{u}_{{zt}}+{\varpi }_{1}{u}_{{xz}}+{\varpi }_{2}{u}_{{yz}}+{\varpi }_{3}{u}_{{zz}}=0,\end{array}\end{eqnarray}$
where u (x, y, z, t) is a real function of the variables x, y, z and t, the coefficients α, ζ κ 's and ϖ κ 's (κ  = 1, 2, 3) are the real constants, and the subscripts with respect to the variables x, y, z and t represent the partial derivatives. Special cases of equation (1 ) have been investigated, as follows:

When α  = ζ 1  = ζ 3  = ϖ 2  = ϖ 3  = 0, ζ 2  = −1 and ϖ 1  = −3, equation (1 ) can be reduced to the generalized B-type Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics [59, 60].

When α  = ϖ 2  = ϖ 3  = 0, ζ 1  = ζ 2  = ζ 3  = 2 and ϖ 1  = −3, equation (1 ) can be reduced to the extended Jimbo–Miwa equation in fluid dynamics [61, 62].

When α  = ζ 1  = ζ 3  = ϖ 2  = ϖ 3  = 0 and ζ 2  = ϖ 1  = −1, equation (1 ) can be reduced to the generalized shallow water wave equation [63, 64].

With the logarithm transformation $u=2{(\mathrm{ln}F)}_{x}$ , the bilinear form for equation (1 ) has been obtained as [58]
$ \begin{eqnarray}\begin{array}{l}({D}_{x}^{3}{D}_{y}+\alpha {D}_{x}^{3}{D}_{z}+{\zeta }_{1}{D}_{x}{D}_{t}+{\zeta }_{2}{D}_{y}{D}_{t}+{\zeta }_{3}{D}_{z}{D}_{t}\\ \quad +\,{\varpi }_{1}{D}_{x}{D}_{z}+{\varpi }_{2}{D}_{y}{D}_{z}+{\varpi }_{3}{D}_{z}^{2})F\cdot F=0,\end{array}\end{eqnarray}$
where F is a real function of x, y, z and t, D is the Hirota bilinear operator defined as [65]
$ \begin{eqnarray*}\begin{array}{l}\displaystyle \prod _{j=1}^{\varphi }{D}_{{X}_{j}}^{{l}_{j}}\check{F}\cdot \check{G}=\displaystyle \prod _{j=1}^{\varphi }{\left(\displaystyle \frac{\partial }{\partial {X}_{j}}-\displaystyle \frac{\partial }{\partial {Y}_{j}}\right)}^{{l}_{j}}\check{F}({X}_{1},{X}_{2},\,\ldots ,\,{X}_{\varphi })\\ \quad \cdot \,{\left.\check{G}({Y}_{1},{Y}_{2},\ldots ,{Y}_{\varphi })\right|}_{{X}_{1}={Y}_{1},{X}_{2}={Y}_{2},\ldots ,{X}_{\varphi }={Y}_{\varphi }},\end{array}\end{eqnarray*}$

where $\check{F}$ and $\check{G}$ are the complex functions of (X 1, X 2, ..., X φ ) and (Y 1, Y 2, ..., Y φ ), φ is a positive integer, X ς 's and Y ς 's (ς  = 1,2, …, φ) are the formal variables, and l ς 's are the non-negative integers. Lump and lump strip solutions for equation (1 ) have been derived [58].
However, to our knowledge, soliton and periodic wave solutions for equation (1 ) have not been obtained. In section 2, one-, two- and three-soliton solutions for equation (1 ) will be derived via the Hirota bilinear method. In section 3, one-periodic wave solution for equation (1 ) will be obtained via the Hirota–Riemann method. In section 4, we will discuss the solitons and the one-periodic waves graphically, and investigate the relation between the one-periodic wave solution and one-soliton solution. In section 5, conclusions will be given.

2. Soliton solutions for equation (1 )

Soliton solutions can be obtained by means of expanding F (x, y, z, t) as
$ \begin{eqnarray}F(x,y,z,t)=1+\varepsilon {F}_{1}+{\varepsilon }^{2}{F}_{2}+{\varepsilon }^{3}{F}_{3}+\ldots +{\varepsilon }^{N}{F}_{N},\end{eqnarray}$
substituting expansion (3 ) into bilinear form (2 ), and then equating the coefficients on the same order of ϵ with zero, where N is a positive integer, ${F}_{\varrho }(x,y,z,t)$ 's ( $\varrho =1,2,3,\ldots $ ) are the real functions and ϵ is a real constant.

2.1. One-soliton solution for equation (1 )

Truncating expression (3 ) to
$ \begin{eqnarray}F(x,y,z,t)=1+\varepsilon {F}_{1},\end{eqnarray}$
and assuming that ${F}_{1}={{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}}$ , ϵ  = 1, we can obtain the one-soliton solution as
$ \begin{eqnarray}u=2\displaystyle \frac{{F}_{1}{k}_{1}}{1+{F}_{1}},\end{eqnarray}$
where ${k}_{1},{m}_{1},{\omega }_{1}\,{n}_{1},{\rm{a}}{\rm{n}}{\rm{d}}\,{\eta }_{1}$ are the real constants,
$ \begin{eqnarray*}{\omega }_{1}=-\displaystyle \frac{{k}_{1}^{3}({m}_{1}+\alpha {n}_{1})+{n}_{1}({k}_{1}{\varpi }_{1}+{m}_{1}{\varpi }_{2}+{n}_{1}{\varpi }_{3})}{{k}_{1}{\zeta }_{1}+{m}_{1}{\zeta }_{2}+{n}_{1}{\zeta }_{3}}.\end{eqnarray*}$

This solution suggests that the magnitude of the one soliton is $2{k}_{1}$ . Characteristic line equation for solution (5 ) is written as
$ \begin{eqnarray}{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}=\mathrm{constant}.\end{eqnarray}$
Differentiating the distance of two characteristic lines with respect to t, we can obtain the velocity ${\boldsymbol{V}}={\left[{V}_{x},{V}_{y},{V}_{z}\right]}^{{\rm{T}}}$ for the one soliton, where
$ \begin{eqnarray}\begin{array}{rcl}{V}_{x} & = & \displaystyle \frac{{k}_{1}[{k}_{1}^{3}({m}_{1}+\alpha {n}_{1})+{n}_{1}({k}_{1}{\varpi }_{1}+{m}_{1}{\varpi }_{2}+{n}_{1}{\varpi }_{3})]}{({k}_{1}{\zeta }_{1}+{m}_{1}{\zeta }_{2}+{n}_{1}{\zeta }_{3})({k}_{1}^{2}+{m}_{1}^{2}+{n}_{1}^{2})},\\ {V}_{y} & = & \displaystyle \frac{{m}_{1}[{k}_{1}^{3}({m}_{1}+\alpha {n}_{1})+{n}_{1}({k}_{1}{\varpi }_{1}+{m}_{1}{\varpi }_{2}+{n}_{1}{\varpi }_{3})]}{({k}_{1}{\zeta }_{1}+{m}_{1}{\zeta }_{2}+{n}_{1}{\zeta }_{3})({k}_{1}^{2}+{m}_{1}^{2}+{n}_{1}^{2})},\\ {V}_{z} & = & \displaystyle \frac{{n}_{1}[{k}_{1}^{3}({m}_{1}+\alpha {n}_{1})+{n}_{1}({k}_{1}{\varpi }_{1}+{m}_{1}{\varpi }_{2}+{n}_{1}{\varpi }_{3})]}{({k}_{1}{\zeta }_{1}+{m}_{1}{\zeta }_{2}+{n}_{1}{\zeta }_{3})({k}_{1}^{2}+{m}_{1}^{2}+{n}_{1}^{2})},\end{array}\end{eqnarray}$
and T represents the transposition of a matrix. Therefore, the coefficients α, ζ κ 's, ϖ κ 's determine the velocity of the one soliton.

2.2. Two-soliton solution for equation (1 )

Truncating F (x, y, z, t) into
$ \begin{eqnarray}F=1+\varepsilon {F}_{1}+{\varepsilon }^{2}{F}_{2},\end{eqnarray}$
and assuming that
$ \begin{eqnarray*}\begin{array}{rcl}{F}_{1} & = & {{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}}+{{\rm{e}}}^{{k}_{2}x+{m}_{2}y+{n}_{2}z+{\omega }_{2}t+{\eta }_{2}},\\ {F}_{2} & = & A{{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}+{k}_{2}x+{m}_{2}y+{n}_{2}z+{\omega }_{2}t+{\eta }_{2}},\,\varepsilon =1,\end{array}\end{eqnarray*}$
we can construct the two-soliton solution as
$ \begin{eqnarray}u=2\displaystyle \frac{{F}_{1x}+{F}_{2x}}{1+{F}_{1}+{F}_{2}},\end{eqnarray}$
where A, k ι 's, m ι 's, n ι 's, ω ι 's and η ι 's (ι  = 1, 2) are the real constants,
$ \begin{eqnarray*}\begin{array}{rcl}{\omega }_{1} & = & -\displaystyle \frac{{k}_{1}^{3}({m}_{1}+\alpha {n}_{1})+{n}_{1}({k}_{1}{\varpi }_{1}+{m}_{1}{\varpi }_{2}+{n}_{1}{\varpi }_{3})}{{k}_{1}{\zeta }_{1}+{m}_{1}{\zeta }_{2}+{n}_{1}{\zeta }_{3}},\\ {\omega }_{2} & = & -\displaystyle \frac{{k}_{2}^{3}({m}_{2}+\alpha {n}_{2})+{n}_{2}({k}_{2}{\varpi }_{1}+{m}_{2}{\varpi }_{2}+{n}_{2}{\varpi }_{3})}{{k}_{2}{\zeta }_{1}+{m}_{2}{\zeta }_{2}+{n}_{2}{\zeta }_{3}},\\ A & = & -\displaystyle \frac{{N}_{1}}{{L}_{1}},\end{array}\end{eqnarray*}$

$ \begin{eqnarray*}\begin{array}{rcl}{N}_{1} & = & \left[{m}_{1}-{m}_{2}+\alpha ({n}_{1}-{n}_{2})\right]{\left({k}_{1}-{k}_{2}\right)}^{3}\\ & & +[({k}_{1}-{k}_{2}){\varpi }_{1}+({m}_{1}-{m}_{2}){\varpi }_{2}+({n}_{1}-{n}_{2}){\varpi }_{3}]\\ & & \times ({n}_{1}-{n}_{2})+[({k}_{1}-{k}_{2}){\zeta }_{1}+({m}_{1}-{m}_{2}){\zeta }_{2}\\ & & +({n}_{1}-{n}_{2}){\zeta }_{3}]({\omega }_{1}-{\omega }_{2}),\\ {L}_{1} & = & [{m}_{1}+{m}_{2}+\alpha ({n}_{1}+{n}_{2})]{\left({k}_{1}+{k}_{2}\right)}^{3}\\ & & +[({k}_{1}+{k}_{2}){\varpi }_{1}+({m}_{1}+{m}_{2}){\varpi }_{2}+({n}_{1}+{n}_{2}){\varpi }_{3}]\\ & & \times ({n}_{1}+{n}_{2})+[({k}_{1}+{k}_{2}){\zeta }_{1}+({m}_{1}+{m}_{2}){\zeta }_{2}\\ & & +({n}_{1}+{n}_{2}){\zeta }_{3}]({\omega }_{1}+{\omega }_{2}).\end{array}\end{eqnarray*}$

2.3. Three-soliton solution for equation (1 )

Truncating expression (3 ) as
$ \begin{eqnarray}F=1+\varepsilon {F}_{1}+{\varepsilon }^{2}{F}_{2}+{\varepsilon }^{3}{F}_{3},\end{eqnarray}$
and supposing that
$ \begin{eqnarray*}\begin{array}{rcl}{F}_{1} & = & {{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}}\\ & & +{{\rm{e}}}^{{k}_{2}x+{m}_{2}y+{n}_{2}z+{\omega }_{2}t+{\eta }_{2}}\\ & & +{{\rm{e}}}^{{k}_{3}x+{m}_{3}y+{n}_{3}z+{\omega }_{3}t+{\eta }_{3}},\\ {F}_{2} & = & {A}_{12}{{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}+{k}_{2}x+{m}_{2}y+{n}_{2}z+{\omega }_{2}t+{\eta }_{2}}\\ & & +{A}_{13}{{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}+{k}_{3}x+{m}_{3}y+{n}_{3}z+{\omega }_{3}t+{\eta }_{3}}\\ & & +{A}_{23}{{\rm{e}}}^{{k}_{2}x+{m}_{2}y+{n}_{2}z+{\omega }_{2}t+{\eta }_{2}+{k}_{3}x+{m}_{3}y+{n}_{3}z+{\omega }_{3}t+{\eta }_{3}},\\ {F}_{3} & = & {A}_{123}{{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}+{k}_{2}x+{m}_{2}y+{n}_{2}z+{\omega }_{2}t+{\eta }_{2}}\\ & & \cdot {{\rm{e}}}^{{k}_{3}x+{m}_{3}y+{n}_{3}z+{\omega }_{3}t+{\eta }_{3}},\varepsilon =1,\end{array}\end{eqnarray*}$

we hereby acquire the three-soliton solution as
$ \begin{eqnarray}u=2\displaystyle \frac{{F}_{1x}+{F}_{2x}+{F}_{3x}}{1+{F}_{1}+{F}_{2}+{F}_{3}},\end{eqnarray}$
where A 12, A 13, A 23, A 123, k κ 's, m κ 's, n κ 's, ω κ 's and η κ 's are the real constants,
$ \begin{eqnarray*}\begin{array}{rcl}{\omega }_{\kappa } & = & -\displaystyle \frac{{k}_{\kappa }^{3}({m}_{\kappa }+\alpha {n}_{\kappa })+{n}_{\kappa }({k}_{\kappa }{\varpi }_{1}+{m}_{\kappa }{\varpi }_{2}+{n}_{\kappa }{\varpi }_{3})}{{k}_{\kappa }{\zeta }_{1}+{m}_{\kappa }{\zeta }_{2}+{n}_{\kappa }{\zeta }_{3}},\\ {A}_{{pq}} & = & -\displaystyle \frac{{N}_{{pq}}}{{L}_{{pq}}},\,(p=1,2,\,q=2,3\,\mathrm{and}\,p\lt q),\\ {N}_{{pq}} & = & \left[{m}_{p}-{m}_{q}+\alpha ({n}_{p}-{n}_{q})\right]{\left({k}_{p}-{k}_{q}\right)}^{3}\\ & & +[({k}_{p}-{k}_{q}){\varpi }_{1}+({m}_{p}-{m}_{q}){\varpi }_{2}+({n}_{p}-{n}_{q}){\varpi }_{3}]\\ & & \times ({n}_{p}-{n}_{q})+[({k}_{p}-{k}_{q}){\zeta }_{1}+({m}_{p}-{m}_{q}){\zeta }_{2}\\ & & +({n}_{p}-{n}_{q}){\zeta }_{3}]({\omega }_{p}-{\omega }_{q}),\\ {L}_{{pq}} & = & [{m}_{p}+{m}_{q}+\alpha ({n}_{p}+{n}_{q})]{\left({k}_{p}+{k}_{q}\right)}^{3}\\ & & +[({k}_{p}+{k}_{q}){\varpi }_{1}+({m}_{p}+{m}_{q}){\varpi }_{2}+({n}_{p}+{n}_{q}){\varpi }_{3}]\\ & & \times ({n}_{p}+{n}_{q})+[({k}_{p}+{k}_{q}){\zeta }_{1}+({m}_{p}+{m}_{q}){\zeta }_{2}\\ & & +({n}_{p}+{n}_{q}){\zeta }_{3}]({\omega }_{p}+{\omega }_{q}),\end{array}\end{eqnarray*}$

$ \begin{eqnarray*}\begin{array}{rcl}{A}_{123} & = & -\displaystyle \frac{{M}_{12}{A}_{12}+{M}_{13}{A}_{13}+{M}_{23}{A}_{23}}{{L}_{123}},(r=6-p-q),\\ {M}_{{pq}} & = & [{m}_{p}+{m}_{q}-{m}_{r}+\alpha ({n}_{p}+{n}_{q}-{n}_{r})]{\left({k}_{p}+{k}_{q}-{k}_{r}\right)}^{3}\\ & & +[({k}_{p}+{k}_{q}-{k}_{r}){\varpi }_{1}+({m}_{p}+{m}_{q}-{m}_{r}){\varpi }_{2}\\ & & +({n}_{p}+{n}_{q}-{n}_{r}){\varpi }_{3}]({n}_{p}+{n}_{q}-{n}_{r})\\ & & +[({k}_{p}+{k}_{q}-{k}_{r}){\zeta }_{1}+({m}_{p}+{m}_{q}-{m}_{r}){\zeta }_{2}\\ & & +({n}_{p}+{n}_{q}-{n}_{r}){\zeta }_{3}]({\omega }_{p}+{\omega }_{q}-{\omega }_{r}),\\ {L}_{123} & = & [{m}_{1}+{m}_{2}+{m}_{3}+\alpha ({n}_{1}+{n}_{2}+{n}_{3})]{\left({k}_{1}+{k}_{2}+{k}_{3}\right)}^{3}\\ & & +[({k}_{1}+{k}_{2}+{k}_{3}){\varpi }_{1}+({m}_{1}+{m}_{2}+{m}_{3}){\varpi }_{2}\\ & & +({n}_{1}+{n}_{2}+{n}_{3}){\varpi }_{3}]({n}_{1}+{n}_{2}+{n}_{3})\\ & & +[({k}_{1}+{k}_{2}+{k}_{3}){\zeta }_{1}+({m}_{1}+{m}_{2}+{m}_{3}){\zeta }_{2}\\ & & +({n}_{1}+{n}_{2}+{n}_{3}){\zeta }_{3}]({\omega }_{1}+{\omega }_{2}+{\omega }_{3}),\end{array}\end{eqnarray*}$

with the constraint ${A}_{123}={A}_{12}{A}_{13}{A}_{23}$ .

3. One-periodic wave solution for equation (1 )

In order to derive the one-periodic wave solution for equation (1 ), we introduce the one-Riemann theta function [33] as
$ \begin{eqnarray}\theta (\xi ,\tau )=\displaystyle \sum _{n=-\infty }^{+\infty }{{\rm{e}}}^{{\rm{i}}\pi {n}^{2}\tau +2{\rm{i}}\pi n\xi },\end{eqnarray}$
where n is an integer, ${\rm{i}}=\sqrt{-1}$ , ξ  = μx  + νy  + ρz  + γt  + δ, τ is a complex constant satisfying Im(τ) > 0, and μ, ν, ρ, γ and δ are the real constants. Substituting θ (ξ, τ) into bilinear form (2 ), we get
$ \begin{eqnarray}\begin{array}{l}\bar{G}[{D}_{x},{D}_{y},{D}_{z},{D}_{t},c]\theta (\xi ,\tau )\cdot \theta (\xi ,\tau )\\ \quad \triangleq \,[{D}_{x}^{3}{D}_{y}+\alpha {D}_{x}^{3}{D}_{z}+{\zeta }_{1}{D}_{x}{D}_{t}+{\zeta }_{2}{D}_{y}{D}_{t}\\ \qquad +\,{\zeta }_{3}{D}_{z}{D}_{t}+{\varpi }_{1}{D}_{x}{D}_{z}+{\varpi }_{2}{D}_{y}{D}_{z}\\ \qquad +\,{\varpi }_{3}{D}_{z}^{2}+c]\theta (\xi ,\tau )\cdot \theta (\xi ,\tau )=0,\end{array}\end{eqnarray}$
where c is a constant to be determined.
With the following property of the Hirota bilinear operators,
$ \begin{eqnarray}\begin{array}{l}{D}_{x}^{r1}{D}_{y}^{r2}{D}_{z}^{r3}{D}_{t}^{r4}{{\rm{e}}}^{{\xi }_{1}}\cdot {{\rm{e}}}^{{\xi }_{2}}\\ =\,{\left({\mu }_{1}-{\mu }_{2}\right)}^{{r}_{1}}{\left({\nu }_{1}-{\nu }_{2}\right)}^{{r}_{2}}{\left({\rho }_{1}-{\rho }_{2}\right)}^{{r}_{3}}{\left({\gamma }_{1}-{\gamma }_{2}\right)}^{{r}_{4}}{{\rm{e}}}^{{\xi }_{1}+{\xi }_{2}},\end{array}\end{eqnarray}$
where ${r}_{1},{r}_{2},{r}_{3},{r}_{4},{\mu }_{\iota },{\nu }_{\iota },{\rho }_{\iota },{\gamma }_{\iota }\,{\rm{a}}{\rm{n}}{\rm{d}}\,{\delta }_{\iota }$ are the real constants, ${\xi }_{\iota }={\mu }_{\iota }x+{\nu }_{\iota }y+{\rho }_{\iota }z+{\gamma }_{\iota }t+{\delta }_{\iota },$ expression (13 ) can be further derived as
$ \begin{eqnarray}\begin{array}{l}\bar{G}[{D}_{x},{D}_{y},{D}_{z},{D}_{t},c]\theta (\xi ,\tau )\cdot \theta (\xi ,\tau )\\ =\,[{D}_{x}^{3}{D}_{y}+\alpha {D}_{x}^{3}{D}_{z}+{\zeta }_{1}{D}_{x}{D}_{t}+{\zeta }_{2}{D}_{y}{D}_{t}\\ \quad +\,{\zeta }_{3}{D}_{z}{D}_{t}+{\varpi }_{1}{D}_{x}{D}_{z}+{\varpi }_{2}{D}_{y}{D}_{z}\\ \quad +\,{\varpi }_{3}{D}_{z}^{2}+c]\displaystyle \sum _{n=-\infty }^{+\infty }{{\rm{e}}}^{{\rm{i}}\pi {n}^{2}\tau +2{\rm{i}}\pi n\xi }\cdot \displaystyle \sum _{m=-\infty }^{+\infty }{{\rm{e}}}^{{\rm{i}}\pi {m}^{2}\tau +2{\rm{i}}\pi m\xi }\\ =\,\displaystyle \sum _{n=-\infty }^{+\infty }\displaystyle \sum _{m=-\infty }^{+\infty }[{D}_{x}^{3}{D}_{y}+\alpha {D}_{x}^{3}{D}_{z}+{\zeta }_{1}{D}_{x}{D}_{t}\\ \quad +\,{\zeta }_{2}{D}_{y}{D}_{t}+{\zeta }_{3}{D}_{z}{D}_{t}+{\varpi }_{1}{D}_{x}{D}_{z}\\ \quad +\,{\varpi }_{2}{D}_{y}{D}_{z}+{\varpi }_{3}{D}_{z}^{2}+c]{{\rm{e}}}^{{\rm{i}}\pi {n}^{2}\tau +2{\rm{i}}\pi n\xi }\cdot {{\rm{e}}}^{{\rm{i}}\pi {m}^{2}\tau +2{\rm{i}}\pi m\xi }\\ =\,\displaystyle \sum _{n=-\infty }^{+\infty }\displaystyle \sum _{m=-\infty }^{+\infty }\bar{G}[2{\rm{i}}\pi (n-m)\mu ,2{\rm{i}}\pi (n-m)\nu ,\\ \quad 2{\rm{i}}\pi (n-m)\rho ,2{\rm{i}}\pi (n-m)\gamma ]\,{{\rm{e}}}^{2{\rm{i}}\pi (n+m)\xi +{\rm{i}}\pi ({n}^{2}+{m}^{2})\tau }\\ \underset{{m}^{{\prime} }=n+m}{\overset{{\rm{def}}}{=======}}\displaystyle \sum _{{m}^{{\prime} }=-\infty }^{+\infty }\hat{G}[{m}^{{\prime} }]{{\rm{e}}}^{2{\rm{i}}\pi {m}^{{\prime} }\xi },\end{array}\end{eqnarray}$
where m is an integer and
$ \begin{eqnarray*}\begin{array}{l}\hat{G}[{m}^{{\rm{{\prime} }}}]\triangleq \displaystyle \displaystyle \sum _{n=-\infty }^{+\infty }\hat{G}[2{\rm{i}}\pi (2n-{m}^{{\rm{{\prime} }}})\mu ,2{\rm{i}}\pi (2n-{m}^{{\rm{{\prime} }}})\nu ,\\ \,2{\rm{i}}\pi (2n-{m}^{{\rm{{\prime} }}})\rho ,2{\rm{i}}\pi (2n-{m}^{{\rm{{\prime} }}})\gamma ]{{\rm{e}}}^{{\rm{i}}\pi [{n}^{2}+{\left(n-{m}^{{\rm{{\prime} }}}\right)}^{2}]\tau }\\ \,\displaystyle \mathop{\mathop{=======}\limits^{{\rm{d}}{\rm{e}}{\rm{f}}}}\limits_{{n}^{{\rm{{\prime} }}}=n-1}\displaystyle \displaystyle \sum _{{n}^{{\rm{{\prime} }}}=-\infty }^{+\infty }\hat{G}[2{\rm{i}}\pi [2{n}^{{\rm{{\prime} }}}-({m}^{{\rm{{\prime} }}}-2)]\mu ,\\ \,2{\rm{i}}\pi [2{n}^{{\rm{{\prime} }}}-({m}^{{\rm{{\prime} }}}-2)]\nu ,\\ \,2{\rm{i}}\pi [2{n}^{{\rm{{\prime} }}}-({m}^{{\rm{{\prime} }}}-2)]\rho ,2{\rm{i}}\pi [2{n}^{{\rm{{\prime} }}}\\ \,-({m}^{{\rm{{\prime} }}}-2)]\gamma ]{{\rm{e}}}^{{\rm{i}}\pi [{n}^{{\rm{{\prime} }}2}+{\left({n}^{{\rm{{\prime} }}}-({m}^{{\rm{{\prime} }}}-2)\right)}^{2}]\tau }\cdot {{\rm{e}}}^{2{\rm{i}}\pi ({m}^{{\rm{{\prime} }}}-1)\tau }\\ \,=\,\hat{G}[{m}^{{\rm{{\prime} }}}-2]{{\rm{e}}}^{2{\rm{i}}\pi ({m}^{{\rm{{\prime} }}}-1)\tau }\\ \,=\ldots =\left\{\begin{array}{l}\hat{G}[0]{{\rm{e}}}^{{\textstyle \tfrac{1}{2}}{m}^{{\rm{{\prime} }}2}{\rm{i}}\pi \tau },({m}^{{\rm{{\prime} }}}\,{\rm{i}}{\rm{s}}\,{\rm{e}}{\rm{v}}{\rm{e}}{\rm{n}}),\\ \hat{G}[1]{{\rm{e}}}^{{\textstyle \tfrac{1}{2}}({m}^{{\rm{{\prime} }}2}-1){\rm{i}}\pi \tau },({m}^{{\rm{{\prime} }}}\,{\rm{i}}{\rm{s}}\,{\rm{o}}{\rm{d}}{\rm{d}}).\end{array}\right.\end{array}\end{eqnarray*}$
To ensure that expression (15 ) satisfies equation (13 ), it is required that $\hat{G}[0]=0$ and $\hat{G}[1]=0$ , where
$ \begin{eqnarray}\begin{array}{rcl}\hat{G}[0] & = & \displaystyle \sum _{n=-\infty }^{+\infty }G[2{\rm{i}}\pi (2n)\mu ,2{\rm{i}}\pi (2n)\nu ,2{\rm{i}}\pi (2n)\rho ,\\ & & 2{\rm{i}}\pi (2n)\gamma ]{{\rm{e}}}^{2{\rm{i}}\pi {n}^{2}\tau }\\ & = & \displaystyle \sum _{n=-\infty }^{+\infty }(256{\pi }^{4}{n}^{4}{\mu }^{3}\nu +256\alpha {\pi }^{4}{n}^{4}{\mu }^{3}\rho \\ & & -16{\zeta }_{1}{\pi }^{2}{n}^{2}\mu \gamma -16{\zeta }_{2}{\pi }^{2}{n}^{2}\nu \gamma -16{\zeta }_{3}{\pi }^{2}{n}^{2}\rho \gamma \\ & & -16{\varpi }_{1}{\pi }^{2}{n}^{2}\mu \rho -16{\varpi }_{2}{\pi }^{2}{n}^{2}\nu \rho \\ & & -16{\varpi }_{3}{\pi }^{2}{n}^{2}{\rho }^{2}+c){{\rm{e}}}^{2{\rm{i}}\pi {n}^{2}\tau },\\ \hat{G}[1] & = & \displaystyle \sum _{n=-\infty }^{+\infty }G[2{\rm{i}}\pi (2n-1)\mu ,2{\rm{i}}\pi (2n-1)\nu ,\\ & & 2{\rm{i}}\pi (2n-1)\rho ,2{\rm{i}}\pi (2n-1)\gamma ]{{\rm{e}}}^{{\rm{i}}\pi (2{n}^{2}-2n+1)\tau }\\ & = & \displaystyle \sum _{n=-\infty }^{+\infty }[16{\pi }^{4}{\left(2n-1\right)}^{4}{\mu }^{3}\nu \\ & & +16\alpha {\pi }^{4}{\left(2n-1\right)}^{4}{\mu }^{3}\rho -4{\zeta }_{1}{\pi }^{2}{\left(2n-1\right)}^{2}\mu \gamma \\ & & -4{\zeta }_{2}{\pi }^{2}{\left(2n-1\right)}^{2}\nu \gamma -4{\zeta }_{3}{\pi }^{2}{\left(2n-1\right)}^{2}\rho \gamma \\ & & -4{\varpi }_{1}{\pi }^{2}{\left(2n-1\right)}^{2}\mu \rho -4{\varpi }_{2}{\pi }^{2}{\left(2n-1\right)}^{2}\nu \rho \\ & & -4{\varpi }_{3}{\pi }^{2}{\left(2n-1\right)}^{2}{\rho }^{2}+c]{{\rm{e}}}^{{\rm{i}}\pi (2{n}^{2}-2n+1)\tau }.\end{array}\end{eqnarray}$
Therefore, $\hat{G}[0]=0$ and $\hat{G}[1]=0$ are equivalent to
$ \begin{eqnarray}\left[\begin{array}{cc}{a}_{11} & {a}_{12}\\ {a}_{21} & {a}_{22}\end{array}\right]\left[\begin{array}{c}\gamma \\ c\end{array}\right]=\left[\begin{array}{c}{b}_{1}\\ {b}_{2}\end{array}\right],\end{eqnarray}$
where
$ \begin{eqnarray}\begin{array}{rcl}{a}_{11} & = & \displaystyle \sum _{n=-\infty }^{+\infty }-16{\pi }^{2}{n}^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho ){{\rm{e}}}^{2{\rm{i}}\pi {n}^{2}\tau },\\ {a}_{12} & = & \displaystyle \sum _{n=-\infty }^{+\infty }{{\rm{e}}}^{2{\rm{i}}\pi {n}^{2}\tau },\\ {b}_{1} & = & \displaystyle \sum _{n=-\infty }^{+\infty }(-256{\pi }^{4}{n}^{4}{\mu }^{3}\nu -256\alpha {\pi }^{4}{n}^{4}{\mu }^{3}\rho \\ & & +16{\varpi }_{1}{\pi }^{2}{n}^{2}\mu \rho +16{\varpi }_{2}{\pi }^{2}{n}^{2}\nu \rho \\ & & +16{\varpi }_{3}{\pi }^{2}{n}^{2}{\rho }^{2}){{\rm{e}}}^{2{\rm{i}}\pi {n}^{2}\tau },\\ {a}_{21} & = & \displaystyle \sum _{n=-\infty }^{+\infty }-4{\pi }^{2}{\left(2n-1\right)}^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho )\\ & & \cdot {{\rm{e}}}^{{\rm{i}}\pi (2{n}^{2}-2n+1)\tau },\\ {a}_{22} & = & \displaystyle \sum _{n=-\infty }^{+\infty }{{\rm{e}}}^{{\rm{i}}\pi (2{n}^{2}-2n+1)\tau },\\ {b}_{2} & = & \displaystyle \sum _{n=-\infty }^{+\infty }[-16{\pi }^{4}{\left(2n-1\right)}^{4}{\mu }^{3}\nu \\ & & -\,16\alpha {\pi }^{4}{\left(2n-1\right)}^{4}{\mu }^{3}\rho +4{\varpi }_{1}{\pi }^{2}{\left(2n-1\right)}^{2}\mu \rho \\ & & +\,4{\varpi }_{2}{\pi }^{2}{\left(2n-1\right)}^{2}\nu \rho +4{\varpi }_{3}{\pi }^{2}{\left(2n-1\right)}^{2}{\rho }^{2}]\\ & & \times \,{{\rm{e}}}^{{\rm{i}}\pi (2{n}^{2}-2n+1)\tau }.\end{array}\end{eqnarray}$
Solving expression (17 ), we can obtain
$ \begin{eqnarray}\gamma =\displaystyle \frac{{a}_{22}{b}_{1}-{a}_{12}{b}_{2}}{{a}_{11}{a}_{22}-{a}_{12}{a}_{21}},\,c=\displaystyle \frac{{a}_{21}{b}_{1}-{a}_{11}{b}_{2}}{{a}_{12}{a}_{21}-{a}_{11}{a}_{22}}.\end{eqnarray}$
According to the theorems in [33], the one-periodic wave solution for equation (1 ) can be constructed as
$ \begin{eqnarray}u={u}_{0}+2{\left[\mathrm{ln}\theta (\xi ,\tau )\right]}_{x},\end{eqnarray}$
where ${u}_{0}$ is a real constant satisfying the asymptotic condition $u\to {u}_{0}$ when $| \xi | \to 0$ .

4. Discussions

4.1. Discussions on the soliton solitons for equation (1 )

Figure 1 presents the one-soliton propagations on the x  − t plane. In figure 1, the magnitude of the one soliton keeps unaltered. Compared with figure 1 (a), figures 1 (b) and 1 (c) illustrate that the coefficients α, ζ κ 's, ϖ κ 's can determine the velocity components of the one soliton, but cannot alter the magnitude of it.
Figure 1. One soliton via solution (5 ), with y  = 0, z  = 0, ζ 1  = ζ 3  = ϖ 1  = ϖ 2  = ϖ 3  = 1, k 1  = 1, m 1  = 2, n 1  = 1, η 1  = 0: (a) α  = 1, ζ 2  = 1; (b) α  = 6, ζ 2  = 1; (c) α  = 1, ζ 2  = 6.
Figure 2 reveals the interaction of the two solitons on the x  − t, y  − t and z  − t planes. These two solitons propagate parallelly in the x and z directions, while in the y direction the two solitons interact around t  = 0 and keep their velocities and magnitudes unchanged after the interaction. This phenomenon indicates that the interaction between the two solitons is elastic.
Figure 2. Two solitons via solution (9 ), with α  = ζ 1  = ζ 2  = ζ 3  = ϖ 1  = ϖ 2  = ϖ 3  = 1, k 1  = 1, m 1  = 1, n 1  = 0.5, η 1  = 0, k 2  = 1, m 2  = 0.5, n 2  = 0.5, η 2  = 0: (a) y  = 0, z  = 0; (b) x  = 0, z  = 0; (c) x  = 0, y  = 0.

4.2. Discussions on the one-periodic wave solution for equation (1 )

Figure 3 presents the one-periodic waves on the x  − t plane. Compared with figure 3 (a), in figures 3 (b) and 3 (c) we find that the coefficients α, ζ κ 's and ϖ κ 's can influence the periods and velocity components of the one-periodic waves, while the amplitudes of the one-periodic waves keep unchanged when α, ζ κ 's and ϖ κ 's take different values.
Figure 3. One-periodic waves via solution (20 ), with y  = 0, z  = 0, ζ 2  = ζ 3  = ϖ 1  = ϖ 2  = ϖ 3  = 0.5, u 0  = 0, μ  = ν  = ρ  = 0.1, δ  = 0, τ  = 0.5i : (a) α  = 0.5, ζ 1  = 0.5; (b) α  = 10, ζ 1  = 0.5; (c) α  = 0.5, ζ 1  = 2.
Furthermore, we are going to discover the relation between the one-soliton solution and one-periodic wave solution, i.e. solutions (5 ) and (20 ).
Defining ${\rm{\Phi }}={{\rm{e}}}^{{\rm{i}}\pi \tau }$ , expression (18 ) can be written as
$ \begin{eqnarray}\begin{array}{rcl}{a}_{11} & = & -32{\pi }^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho )({{\rm{\Phi }}}^{2}\\ & & +4{{\rm{\Phi }}}^{8}+\ldots +{n}^{2}{{\rm{\Phi }}}^{2{n}^{2}}+\ldots ),\\ {a}_{12} & = & 1+2({{\rm{\Phi }}}^{2}+{{\rm{\Phi }}}^{8}+\ldots +{{\rm{\Phi }}}^{2{n}^{2}}+\ldots ),\\ {b}_{1} & = & 2[-256{\pi }^{4}{\mu }^{3}(\nu +\alpha \rho )+16{\pi }^{2}\rho ({\varpi }_{1}\mu \\ & & +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]{{\rm{\Phi }}}^{2}\\ & & +2[-4096{\pi }^{4}{\mu }^{3}(\nu +\alpha \rho )\\ & & +64{\pi }^{2}\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]{{\rm{\Phi }}}^{8}+\ldots \\ & & +2[-256{n}^{4}{\pi }^{4}{\mu }^{3}(\nu +\alpha \rho )\\ & & +16{n}^{2}{\pi }^{2}\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]{{\rm{\Phi }}}^{2{n}^{2}}+\ldots ,\\ {a}_{21} & = & -8{\pi }^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho )({\rm{\Phi }}+9{{\rm{\Phi }}}^{5}\\ & & +\ldots +{\left(2n-1\right)}^{2}{{\rm{\Phi }}}^{2{n}^{2}-2n+1}+\ldots ),\\ {a}_{22} & = & 2({\rm{\Phi }}+{{\rm{\Phi }}}^{5}+\ldots +{{\rm{\Phi }}}^{2{n}^{2}-2n+1}+\ldots ),\\ {b}_{2} & = & 2[-16{\pi }^{4}{\mu }^{3}(\nu +\alpha \rho )\\ & & +4{\pi }^{2}\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]{\rm{\Phi }}\\ & & +2[-144{\pi }^{4}{\mu }^{3}(\nu +\alpha \rho )\\ & & +36{\pi }^{2}\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]{{\rm{\Phi }}}^{5}\\ & & +\ldots +2[-16{\pi }^{4}{\left(2n-1\right)}^{4}{\mu }^{3}(\nu +\alpha \rho )\\ & & +4{\pi }^{2}{\left(2n-1\right)}^{2}\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]\\ & & \times {{\rm{\Phi }}}^{2{n}^{2}-2n+1}+\ldots \,.\end{array}\end{eqnarray}$
Accordingly, expression (17 ) can be transformed as
$ \begin{eqnarray}\begin{array}{l}\left[\begin{array}{cc}{a}_{11} & {a}_{12}\\ {a}_{21} & {a}_{22}\end{array}\right]\,=\,{{\boldsymbol{A}}}_{0}+{{\boldsymbol{A}}}_{1}{\rm{\Phi }}+{{\boldsymbol{A}}}_{2}{{\rm{\Phi }}}^{2}\,+\ldots ,\\ \left[\begin{array}{c}{b}_{1}\\ {b}_{2}\end{array}\right]\,=\,{{\boldsymbol{B}}}_{0}+{{\boldsymbol{B}}}_{1}{\rm{\Phi }}+{{\boldsymbol{B}}}_{2}{{\rm{\Phi }}}^{2}\,+\ldots ,\\ \left[\begin{array}{c}\gamma \\ c\end{array}\right]\,=\,{{\boldsymbol{X}}}_{0}+{{\boldsymbol{X}}}_{1}{\rm{\Phi }}+{{\boldsymbol{X}}}_{2}{{\rm{\Phi }}}^{2}+\ldots ,\end{array}\end{eqnarray}$
where
$ \begin{eqnarray}\begin{array}{rcl}{{\boldsymbol{A}}}_{0} & = & \left[\begin{array}{cc}0 & 1\\ 0 & 0\end{array}\right],\,{{\boldsymbol{A}}}_{1}=\left[\begin{array}{cc}0 & 0\\ -8{\pi }^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho ) & 2\end{array}\right],\\ {{\boldsymbol{A}}}_{2} & = & \left[\begin{array}{cc}-32{\pi }^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho ) & 2\\ 0 & 0\end{array}\right],\\ {{\boldsymbol{A}}}_{3} & = & {\bf{0}},\,{{\boldsymbol{A}}}_{4}={\bf{0}},\ldots ,\\ {{\boldsymbol{B}}}_{0} & = & {\bf{0}},\,\\ {{\boldsymbol{B}}}_{1} & = & \left[\begin{array}{c}0\\ 8[-4{\pi }^{4}{\mu }^{3}(\nu +\alpha \rho )+{\pi }^{2}\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]\end{array}\right],\\ {{\boldsymbol{B}}}_{2} & = & \left[\begin{array}{c}32[-16{\pi }^{4}{\mu }^{3}(\nu +\alpha \rho )+{\pi }^{2}\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]\\ 0\end{array}\right],\\ {{\boldsymbol{B}}}_{3} & = & {\bf{0}},\,{{\boldsymbol{B}}}_{4}={\bf{0}},\ldots \,.\end{array}\end{eqnarray}$
Substituting expression (22 ) into expression (17 ), we have
$ \begin{eqnarray}\begin{array}{rcl}{{\boldsymbol{X}}}_{0} & = & \left[\begin{array}{c}\tfrac{2{{\boldsymbol{B}}}_{0}^{[1]}-{{\boldsymbol{B}}}_{1}^{[2]}}{8{\pi }^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho )}\\ {{\boldsymbol{B}}}_{0}^{[1]}\end{array}\right],\,{{\boldsymbol{X}}}_{1}=\left[\begin{array}{c}\tfrac{2{{\boldsymbol{B}}}_{1}^{[1]}-{\left[{{\boldsymbol{B}}}_{2}-{{\boldsymbol{A}}}_{2}{{\boldsymbol{X}}}_{0}\right]}^{[2]}}{8{\pi }^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho )}\\ {{\boldsymbol{B}}}_{1}^{[1]}\end{array}\right],\ldots ,\\ {{\boldsymbol{X}}}_{n} & = & \left[\begin{array}{c}\tfrac{2{\left[{{\boldsymbol{B}}}_{n+1}-{\displaystyle \sum }_{j=2}^{n}{{\boldsymbol{A}}}_{j}{{\boldsymbol{X}}}_{n-j}\right]}^{[1]}-{\left[{{\boldsymbol{B}}}_{n+1}-{\displaystyle \sum }_{j=2}^{n+1}{{\boldsymbol{A}}}_{j}{{\boldsymbol{X}}}_{n+1-j}\right]}^{[2]}}{8{\pi }^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho )}\\ {\left[{{\boldsymbol{B}}}_{n+1}-{\displaystyle \sum }_{j=2}^{n}{{\boldsymbol{A}}}_{j}{{\boldsymbol{X}}}_{n-j}\right]}^{[1]}\end{array}\right],\ldots ,\end{array}\end{eqnarray}$
where the superscripts [1] and [2] respectively represent the first and second elements of a two-dimensional vector. Taking expression (24 ) into consideration, we can derive
$ \begin{eqnarray}\begin{array}{rcl}{{\boldsymbol{X}}}_{0} & = & \left[\begin{array}{c}\tfrac{4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )-\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )}{{\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho }\\ 0\end{array}\right],\,{{\boldsymbol{X}}}_{1}={\bf{0}},\\ {{\boldsymbol{X}}}_{2} & = & \left[\begin{array}{c}\tfrac{8[-4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )+\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]}{{\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho }\\ 32{\pi }^{2}[-4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )+\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]\end{array}\right],\ldots \,.\end{array}\end{eqnarray}$
Therefore, the vector [γ, c ]T can be expressed as
$ \begin{eqnarray}\begin{array}{l}\left[\begin{array}{c}\gamma \\ c\end{array}\right]=\left[\begin{array}{c}\tfrac{4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )-\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )}{{\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho }\\ 0\end{array}\right]\\ +\,\left[\begin{array}{c}\tfrac{8[-4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )+\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]}{{\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho }\\ 32{\pi }^{2}[-4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )+\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]\end{array}\right]{{\rm{\Phi }}}^{2}+\ldots ,\end{array}\end{eqnarray}$
which implies that when ${\rm{\Phi }}\to 0$ , we have $\gamma \,\to \frac{4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )-\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )}{{\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho }$ and $c\to 0$ . Considering solution (5 ), we are inspired to assume that
$ \begin{eqnarray}\mu =\displaystyle \frac{{k}_{1}}{2{\rm{i}}\pi },\,\nu =\displaystyle \frac{{m}_{1}}{2{\rm{i}}\pi },\,\rho =\displaystyle \frac{{n}_{1}}{2{\rm{i}}\pi },\,\delta =\displaystyle \frac{{\eta }_{1}-{\rm{i}}\pi \tau }{2{\rm{i}}\pi },\end{eqnarray}$
based on which we obtain
$ \begin{eqnarray}\begin{array}{l}2{\rm{i}}\pi \xi \,=\,2{\rm{i}}\pi \mu x+2{\rm{i}}\pi \nu y+2{\rm{i}}\pi \rho z+2{\rm{i}}\pi \gamma t+2{\rm{i}}\pi \delta \\ \,\mathop{=}\limits^{{\rm{\Phi }}\to 0}\,{k}_{1}x+{m}_{1}y+{n}_{1}z\\ \,+\,2{\rm{i}}\pi \displaystyle \frac{4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )-\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )}{{\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho }t\\ \,+\,{\eta }_{1}-{\rm{i}}\pi \tau \\ \,=\,{k}_{1}x+{m}_{1}y+{n}_{1}z\\ \,-\displaystyle \frac{{k}_{1}^{3}({m}_{1}+\alpha {n}_{1})+{n}_{1}({k}_{1}{\varpi }_{1}+{m}_{1}{\varpi }_{2}+{n}_{1}{\varpi }_{3})}{{k}_{1}{\zeta }_{1}+{m}_{1}{\zeta }_{2}+{n}_{1}{\zeta }_{3}}t\\ \,+\,{\eta }_{1}-{\rm{i}}\pi \tau \\ \,=\,{k}_{1}x+{m}_{1}y+{n}_{1}z+{\varpi }_{1}\,t+{\eta }_{1}-{\rm{i}}\pi \tau .\end{array}\end{eqnarray}$
Thus, expression (12 ) can be derived as
$ \begin{eqnarray}\begin{array}{rcl}\theta (\xi ,\tau ) & = & \displaystyle \sum _{n=-{\rm{\infty }}}^{+{\rm{\infty }}}{{\rm{e}}}^{{\rm{i}}\pi {n}^{2}\tau +2{\rm{i}}\pi n\xi }\\ & = & 1+({{\rm{e}}}^{2{\rm{i}}\pi \xi }+{{\rm{e}}}^{-2{\rm{i}}\pi \xi }){\rm{\Phi }}+\ldots +({{\rm{e}}}^{2{\rm{i}}\pi n\xi }+{{\rm{e}}}^{-2{\rm{i}}\pi n\xi }){{\rm{\Phi }}}^{{n}^{2}}\\ & = & 1+({{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}-{\rm{i}}\pi \tau }\\ & & +{{\rm{e}}}^{-({k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1})+{\rm{i}}\pi \tau }){\rm{\Phi }}+\ldots \\ & = & 1+{{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}}\\ & & +\,{{\rm{e}}}^{-({k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1})}{{\rm{\Phi }}}^{2}+\ldots \\ & \mathop{=}\limits^{{\rm{\Phi }}\to 0} & 1+{F}_{1}.\end{array}\end{eqnarray}$
Therefore, we can conclude that when ${\rm{\Phi }}\to 0$ , the one-periodic wave solution approaches to the one-soliton solution.

5. Conclusions

In this paper, we have investigated a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics, i.e. equation (1 ). Via the Hirota bilinear method, we have obtained the one-, two- and three-soliton solutions for equation (1 ), i.e. solutions (5 ), (9 ) and (11 ), respectively. In addition, the one-periodic wave solution for equation (1 ), i.e. solution (20 ), has been constructed by virtue of the Hirota–Riemann method. When the factor ${\rm{\Phi }}\to 0$ , the one-periodic wave solution approaches to the one-soliton solution. Propagation velocity of the one soliton has been derived as expression (7 ), and magnitude of the one soliton is 2k 1 . Figures have been constructed: figure 1 illustrates that the coefficients α, ζ κ 's and ϖ κ 's can determine the velocity components of the one soliton, but cannot alter the magnitude of it; in figure 2, we find that the interaction between the two solitons is elastic; figure 3 indicates that the coefficients α, ζ κ 's and ϖ κ 's can influence the periods and velocities of the one-periodic waves, but cannot alter the wave amplitudes.

Conflict of interest

The authors declare that they have no conflict of interest.

We express our sincere thanks to all the members of our discussion group for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 11 272 023, and by the Fundamental Research Funds for the Central Universities under Grant No. 50 100 002 016 105 010.

1
Liu D Tariq K U Osman M S Baleanu D Younis M Khater M M A 2019 Results Phys. 14 102491

DOI

2
Ma W X 2011 Commun. Nonlinear Sci. Numer. Simul. 16 2663

DOI

3
Chen Y Yan Z Y Zhang H 2003 Phys. Lett. A 307 107

DOI

4
Hu C C Tian B Yin H M Zhang C R Zhang Z 2019 Comput. Math. Appl. 78 166

DOI

5
Hu C C Tian B Wu X Y Yuan Y Q Du Z 2018 Eur. Phys. J. Plus 133 40

DOI

6
Hosseini K Aligoli M Mirzazadeh M 2019 Mod. Phys. Lett. B 33 1950437

DOI

7
Seadawy A R Iqbal M Lu D 2019 Comput. Math. Appl. 78 3620

DOI

8
David D Kamran N Levi D Winternitz P 1985 Phys. Rev. Lett. 55 2111

DOI

9
Gao X Y 2019 Appl. Math. Lett. 91 165

DOI

10
Yuan Y Q Tian B Qu Q X Zhao X H Du X X 2020 Angew. Math. Phys. 71 46

DOI

11
Gao X Y Guo Y J Shan W R 2020 Commun. Theor. Phys. 72 095002

DOI

12
Gao X Y Guo Y J Shan W R Yuan Y Q Zhang C R Chen S S 2021 Appl. Math. Lett. 111 106627

DOI

13
Soomere T 2010 Eur. Phys. J.-Spec. Top. 185 81

DOI

14
Kovalyov M 2014 Discrete Continuous Dyn. A 38 3061

DOI

15
Arcas D Segur H 2012 Phil. Trans. R. Soc. A 370 1505

DOI

16
Chen G Y Liu C T Wang Y H Hsu M K 2011 J. Geophys. Res.-Atmos. 116 C06013

DOI

17
Sarfraz H Saleem U 2020 Chaos Solitons Fractals 130 109451

DOI

18
Amjad Z Haider B 2020 Chaos Solitons Fractals 130 109404

DOI

19
Guo D Tian S F 2018 Mod. Phys. Lett. B 32 1850345

DOI

20
Yin H M Tian B Zhao X C 2020 Appl. Math. Comput. 368 124768

DOI

21
Du Z Tian B Qu Q X Wu X Y Zhao X H 2020 Appl. Numer. Math. 153 179

DOI

22
Zhang C R Tian B Qu Q X Liu L Tian H 2020 Z. Angew. Math. Phys. 71 18

DOI

23
Yian H M Tian B Zhao X C 2020 J. Magn. Magn. Mater. 495 165871

DOI

24
Li J Gu X F Yu T Zhan Y L Liu Z Lv X Li L L Wang C M 2016 Nonlinear Dyn. 83 1463

DOI

25
Yuan Y Q Tian B Qu Q X Zhang C R Du X X 2020 Nonlinear Dyn. 99 3001

DOI

26
Chen S S Tian B Sun Y Zhang C R 2019 Ann. Phys.-Berlin 531 1900011

DOI

27
Chen S S Tian B Liu L Yuan Y Q Zhang C R 2019 Chaos Solitons Fractals 118 337

DOI

28
Du Z Tian B Chai H-P Zhao X-H 2020 Appl. Math. Lett. 102 106110

DOI

29
Zhang C-R Tian B Sun Y Yin H-M 2019 EPL 127 40003

DOI

30
Gao X Y Guo Y J Shan W R 2020 Appl. Math. Lett. 104 106170

DOI

31
Gao X Y Guo Y J Shan W R 2020 Chaos Solitons Fractals 138 109950

DOI

32
Huang Q M Gao Y T Jia S L Wang Y L Deng G F 2017 Nonlinear Dyn. 87 2529

DOI

33
Ma P L Tian S F 2014 Commun. Theor. Phys. 62 17

DOI

34
Mabrouk S M Rashed A S 2019 Chin. J. Phys. 60 48

DOI

35
Wang M Tian B Qu Q X Du X X Zhang C R Zhang Z 2019 Eur. J. Phys. Plus 134 578

DOI

36
Wang M Tian B Sun Y Zhang Z 2020 Comput. Math. Appl. 79 576

DOI

37
Bilman D Miller P D 2019 Commun. Pure Appl. Math. 72 1722

DOI

38
Luo X D 2019 Chaos 29 073118

DOI

39
Hirota M J Ablowitz M Clarkson P Clarkson P A 1990 Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform London Cambridge University Press

40
Hamid M Usman M Zubair T Haq R U Shafee A 2019 Physica A 528 121320

DOI

41
Darvishi M T Najafi M Arbabi S Kavitha L 2016 Nonlinear Dyn. 83 1453

DOI

42
Yildirim Y Yasar E Adem A R 2017 Nonlinear Dyn. 89 2291

DOI

43
Adem A R 2016 Int. J. Mod. Phys. B 30 1640001

DOI

44
Gao X Y Guo Y J Shan W R 2020 Phys. Lett. A 384 126788

DOI

45
Angelelli M 2019 J. Math. Phys. 60 073511

DOI

46
Svinin A K 2004 Theor. Math. Phys. 141 1542

DOI

47
Chu M X Tian B Yuan Y Q Zhang Z Tian H Y 2019 Commun. Theor. Phys. 71 1393

DOI

48
Chen J C Feng B F Maruno K Ohta Y 2018 Stud. Appl. Math. 141 145

DOI

49
Jaradat H M Al-Shara S Awawdeh F Alquran M 2012 Phys. Scr. 85 035001

DOI

50
Tian S F Zhang H Q 2010 J. Math. Anal. Appl. 371 585

DOI

51
Tian S F Zhang H Q 2013 Chaos Solitons Fractals 47 27

DOI

52
Yan H Tian S F Feng L L Zhang T T 2016 Waves Random Media 26 444

DOI

53
Tu J M Tian S F Xu M J Song X Q Zhang T T 2016 Nonlinear Dyn. 83 1199

DOI

54
Rizvi S T R Afzal I Ali K Younis M 2019 Acta Phys. Pol. A 136 187

DOI

55
Hu S H Tian B Du X X Liu L Zhang C R 2019 Pramana-J. Phys. 93 38

DOI

56
Du X X Tian B Qu Q X Yuan Y Q Zhao X H 2020 Chaos Solitons Fractals 134 109709

DOI

57
Du X X Tian B Yuan Y Q Du Z 2019 Ann. Phys.-Berlin 531 1900198

DOI

58
Guan X Liu W J Zhou Q Biswas A 2020 Appl. Math. Comput. 366 124757

DOI

59
Liu S Ding Y Liu J G 2017 Int. J. Nonlinear Sci. 18 137

DOI

60
Ding C C Gao Y T Deng G F 2019 Nonlinear Dyn. 97 2023

DOI

61
Liu J G Yang X J Cheng M H Feng Y Y Wang Y D 2019 Comput. Math. Appl. 78 1947

DOI

62
Wazwaz A M 2017 Appl. Math. Lett. 64 21

DOI

63
Zhang Y Dong H H Zhang X E Yang H W 2017 Comput. Math. Appl. 73 246

DOI

64
Tang Y N Ma W X Xu W 2012 Chin. Phys. B 21 070212

DOI

65
Hirota R 2004 The Direct Method in Soliton Theory London Cambridge University Press

Outlines

/