1. Introduction
2. Structure of the wave functions
Table 1. IRREPs of the flavor-spin symmetry corresponding to each possible orbital symmetry. |
[f]O | [f]FS |
---|---|
[4] | [31] |
[31] | [4], [31], [22], [211] |
[22] | [31], [211] |
[211] | [31], [22], [211], [1111] |
[1111] | [211] |
Table 2. Spin-flavor decomposition of the three flavor q4 states (taken from reference [47]. The subscripts stand for the dimensions of the IRREP). |
[f]O | SUFS(6) | SUF(3) | ⨂ | SUS(2) | |
---|---|---|---|---|---|
[4] | [4]126 | [4]15 | ⨂ | [4]5 | |
[31]15 | ⨂ | [31]3 | |||
[22]6 | ⨂ | [22]1 | |||
| |||||
[31] | [31]210 | [4]15 | ⨂ | [31]3 | |
[31]15 | ⨂ | [4]5 | |||
[31]15 | ⨂ | [31]3 | |||
[31]15 | ⨂ | [22]1 | |||
[22]6 | ⨂ | [31]3 | |||
[211]3 | ⨂ | [22]1 | |||
[211]3 | ⨂ | [31]3 | |||
| |||||
[22] | [22]105 | [4]15 | ⨂ | [22]1 | |
[31]15 | ⨂ | [31]3 | |||
[22]6 | ⨂ | [4]5 | |||
[22]6 | ⨂ | [22]1 | |||
[211]3 | ⨂ | [31]3 | |||
| |||||
[211] | [211]105 | [31]15 | ⨂ | [31]3 | |
[31]15 | ⨂ | [22]1 | |||
[22]6 | ⨂ | [31]3 | |||
[211]3 | ⨂ | [4]5 | |||
[211]3 | ⨂ | [31]3 | |||
[211]3 | ⨂ | [22]1 | |||
| |||||
[1111] | [1111]15 | [22]6 | ⨂ | [22]1 | |
[211]3 | ⨂ | [31]3 |
Table 3. Spin-flavor decomposition of the ${q}^{4}\bar{q}$ states (taken from reference [47]. The subscripts stand for the dimensions of the IRREP). |
[f]O | SUsf(6) | SUf(3) | ⨂ | SUs(2) | |
---|---|---|---|---|---|
[4] | [51111]700 | [51]35 | ⨂ | [5]6 | |
[51]35 | ⨂ | [41]4 | |||
[42]27 | ⨂ | [41]4 | |||
[42]27 | ⨂ | [32]2 | |||
[33]10 | ⨂ | [32]2 | |||
[411]10 | ⨂ | [5]6 | |||
[411]10 | ⨂ | [41]4 | |||
[411]10 | ⨂ | [32]2 | |||
[321]8 | ⨂ | [41]4 | |||
[321]8 | ⨂ | [32]2 | |||
| |||||
[4] + [31] | [411111]56 | [411]10 | ⨂ | [41]4 | |
[321]8 | ⨂ | [32]2 | |||
| |||||
[31] | [42111]1134 | [51]35 | ⨂ | [41]4 | |
[51]35 | ⨂ | [32]2 | |||
[42]27 | ⨂ | [5]6 | |||
2([42]27 | ⨂ | [41]4) | |||
2([42]27 | ⨂ | [32]2) | |||
[33]10 | ⨂ | [41]4 | |||
[33]10 | ⨂ | [32]2 | |||
[411]10 | ⨂ | [5]6 | |||
2([411]10 | ⨂ | [41]4) | |||
2([411]10 | ⨂ | [32]2) | |||
[321]8 | ⨂ | [5]6 | |||
2([321]8 | ⨂ | [41]4) | |||
2([321]8 | ⨂ | [32]2) | |||
[222]1 | ⨂ | [41]4 | |||
[222]1 | ⨂ | [32]2 | |||
[f]O | SUsf(6) | SUf(3) | ⨂ | SUs(2) | |
| |||||
[31] + [22] + [211] | [321111]70 | [411]10 | ⨂ | [32]2 | |
${[321]}_{8}$ | ⨂ | [41]4 | |||
[321]8 | ⨂ | [32]2 | |||
[222]1 | ⨂ | [32]2 | |||
| |||||
[22] | [33111]560 | [51]35 | ⨂ | [32]2 | |
[42]27 | ⨂ | [41]4 | |||
[42]27 | ⨂ | [32]2 | |||
[33]10 | ⨂ | [5]6 | |||
[33]10 | ⨂ | [41]4 | |||
[33]10 | ⨂ | [32]2 | |||
[411]10 | ⨂ | [41]4 | |||
[411]10 | ⨂ | [32]2 | |||
[321]8 | ⨂ | [5]6 | |||
2([321]8 | ⨂ | [41]4) | |||
2([321]8 | ⨂ | [32]2) | |||
[222]1 | ⨂ | [41]4 | |||
| |||||
[211] | [3211]540 | [42]7 | ⨂ | [41]4 | |
2([42]7 | ⨂ | [32]2 | |||
[33]10 | ⨂ | [41]4 | |||
[33]10 | ⨂ | [32]2 | |||
[411]10 | ⨂ | [41]4 | |||
[411]10 | ⨂ | [32]2 | |||
[321]8 | ⨂ | [5]6 | |||
2([321]8 | ⨂ | [41]4) | |||
2([321]8 | ⨂ | [32]2) | |||
[222]1 | ⨂ | [5]6 | |||
[222]1 | ⨂ | [41]4 | |||
[222]1 | ⨂ | [32]2 | |||
| |||||
[211] + [1111] | [222111]20 | [321]8 | ⨂ | [32]2 | |
[222]1 | ⨂ | [41]4 | |||
| |||||
[1111] | [22221]70 | [33]10 | ⨂ | [32]2 | |
[321]8 | ⨂ | [41]4 | |||
[321]8 | ⨂ | [32]2 | |||
[222]1 | ⨂ | [32]2 |
3. Inherent nodal structure analysis
Figure 1. Left panel: body frame illustration of the equilateral tetradedron (ETH) configuration. Right panel: body frame illustration of the square. |
Table 4. IRREPs of the permutation group S4 under the standard basis. |
[4] | p12 = p23 = p34 = p1423 = p243 = p1324 = 1, |
[31] | ${p}_{12}=\left(\begin{array}{ccc}-1 & 0 & 0\\ -1 & 1 & 0\\ -1 & 0 & 1\end{array}\right)$, ${p}_{23}=\left(\begin{array}{ccc}0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\end{array}\right)$, ${p}_{34}=\left(\begin{array}{ccc}1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0\end{array}\right)$, |
${p}_{1423}=\left(\begin{array}{ccc}0 & 1 & -1\\ 0 & 0 & -1\\ 1 & 0 & -1\end{array}\right)$, ${p}_{243}=\left(\begin{array}{ccc}0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0\end{array}\right)$, ${p}_{1324}=\left(\begin{array}{ccc}0 & -1 & 1\\ 1 & -1 & 0\\ 0 & -1 & 0\end{array}\right)$, | |
| |
[22] | ${p}_{12}=\left(\begin{array}{cc}-1 & 0\\ -1 & 1\end{array}\right)$, ${p}_{23}=\left(\begin{array}{cc}0 & 1\\ 1 & 0\end{array}\right)$, ${p}_{34}=\left(\begin{array}{cc}-1 & 0\\ -1 & 1\end{array}\right)$, |
${p}_{1423}=\left(\begin{array}{cc}-1 & 0\\ -1 & 1\end{array}\right)$, ${p}_{243}=\left(\begin{array}{cc}-1 & 1\\ -1 & 0\end{array}\right)$, ${p}_{1324}=\left(\begin{array}{cc}-1 & 0\\ -1 & 1\end{array}\right)$, | |
| |
[211] | ${p}_{12}=\left(\begin{array}{ccc}1 & 0 & 0\\ 1 & -1 & 0\\ 1 & 0 & -1\end{array}\right)$, ${p}_{23}=\left(\begin{array}{ccc}0 & -1 & 0\\ -1 & 0 & 0\\ 0 & 0 & -1\end{array}\right)$, ${p}_{34}=\left(\begin{array}{ccc}-1 & 0 & 0\\ 0 & 0 & -1\\ 0 & -1 & 0\end{array}\right)$, |
${p}_{1423}=\left(\begin{array}{ccc}0 & -1 & 1\\ 0 & 0 & 1\\ -1 & 0 & 1\end{array}\right)$, ${p}_{243}=\left(\begin{array}{ccc}0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0\end{array}\right)$, ${p}_{1324}=\left(\begin{array}{ccc}0 & 1 & -1\\ -1 & 1 & 0\\ 0 & -1 & 0\end{array}\right)$, | |
| |
[1111] | p12 = p23 = p34 = p1423 = p1324 = − 1,p243 = 1. |
Table 5. IRREPs of the rotation group, j is the angular moment, m1 and m2 denote the rows and columns of the matrix, α, β, γ is the Eulerian angular. |
${D}_{{m}_{1},{m}_{2}}^{j}(\alpha ,\beta ,\gamma )$ $=\,{\sum }_{k}\tfrac{{\left(-1\right)}^{k}\sqrt{(j+{m}_{1})!(j-{m}_{1})!(j+{m}_{2})!(j-{m}_{2})!}\exp (-{\rm{i}}\alpha {m}_{1}-{\rm{i}}\gamma {m}_{2}){\sin }^{2k-{m}_{1}+{m}_{2}}\left(\tfrac{\beta }{2}\right){\cos }^{2j-2k+{m}_{1}-{m}_{2}}\left(\tfrac{\beta }{2}\right)}{k!(j-k+{m}_{1})!(j-k-{m}_{2})!(k-{m}_{1}+{m}_{2})!}$ | |
---|---|
L = 1 | ${R}_{\pi }^{\hat{k}}=D(0,0,\pi )=\left(\begin{array}{ccc}-1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1\end{array}\right)$, ${R}_{\pi }^{\hat{j}}=D(0,\pi ,0)=\left(\begin{array}{ccc}0 & 0 & 1\\ 0 & -1 & 0\\ 1 & 0 & 0\end{array}\right)$, ${R}_{\pi /2}^{\hat{k}}=D(0,0,\pi /2)=\left(\begin{array}{ccc}-{\rm{i}} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & {\rm{i}}\end{array}\right)$, |
${R}_{2\pi /3}^{\hat{n}}=D(0,-\theta ,0)\cdot D(2\pi /3,\theta ,0)\,=\,\left(\begin{array}{ccc}-{\rm{i}}/2 & 1/2+{\rm{i}}/2 & -1/2\\ 1/2+{\rm{i}}/2 & 0 & -1/2+{\rm{i}}/2\\ -1/2 & -1/2+{\rm{i}}/2 & {\rm{i}}/2\end{array}\right)$, $\quad \theta =\mathrm{Arccos}(\tfrac{1}{\sqrt{3}})$. |
Table 6. Obtained accessibility of the ETH configuration and the square configuration to the (Lπλ) and related configurations of the wave functions. |
Lπ | [4] | [31] | [22] | [211] | [1111] | |
---|---|---|---|---|---|---|
ETH | 0+ | A | — | — | A | — |
1− | — | A | A | A | A | |
2+ | A | A | A | A | A | |
3− | A | A | A | A | A | |
| ||||||
ETH3 | 0+ | A | — | A | A | — |
1− | — | A | A | A | A | |
2+ | A | A | A | A | A | |
3− | A | A | A | A | A | |
| ||||||
Square | 0+ | A | — | A | — | — |
1− | — | A | — | A | — | |
2+ | A | A | A | A | A | |
3− | — | A | — | A | — | |
| ||||||
Square3 | 0+ | A | A | A | A | — |
1− | — | A | — | A | — | |
2+ | A | A | A | A | A | |
3− | — | A | — | A | - |
Table 7. Obtained number of the accessible (nodeless) states JP with orbital angular momentum L ≤ 3 of the ETH configuration and square configuration of the 4-quark system and the corresponding less restricted ones. |
Configuration | 0+ | 0− | 1+ | 1− | 2+ | 2− | 3+ | 3− | 4+ | 4− | 5+ | 5− |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ETH | 7 | 10 | 19 | 22 | 25 | 28 | 15 | 26 | 4 | 15 | 0 | 4 |
square | 7 | 7 | 18 | 15 | 25 | 19 | 15 | 17 | 4 | 10 | 0 | 2 |
ETH3 | 9 | 10 | 21 | 22 | 26 | 28 | 15 | 26 | 4 | 15 | 0 | 4 |
square3 | 11 | 7 | 25 | 15 | 27 | 19 | 15 | 17 | 4 | 10 | 0 | 2 |