Welcome to visit Communications in Theoretical Physics,
Gravitation Theory, Astrophysics and Cosmology

Impacts of dark energy on constraining neutrino mass after Planck 2018

  • Ming Zhang 1 ,
  • Jing-Fei Zhang 1 ,
  • Xin Zhang , 1, 2, 3,
Expand
  • 1Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
  • 2 Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, China
  • 3Center for Gravitation and Cosmology, Yangzhou University, Yangzhou 225009, China

Author to whom any correspondence should be addressed.

Received date: 2020-09-04

  Accepted date: 2020-09-21

  Online published: 2020-12-16

Copyright

© 2020 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

Considering the mass splittings of three active neutrinos, we investigate how the properties of dark energy affect the cosmological constraints on the total neutrino mass $\sum {m}_{\nu }$ using the latest cosmological observations. In this paper, several typical dark energy models, including ΛCDM, wCDM, CPL, and HDE models, are discussed. In the analysis, we also consider the effects from the neutrino mass hierarchies, i.e. the degenerate hierarchy (DH), the normal hierarchy (NH), and the inverted hierarchy (IH). We employ the current cosmological observations to do the analysis, including the Planck 2018 temperature and polarization power spectra, the baryon acoustic oscillations (BAO), the type Ia supernovae (SNe), and the Hubble constant H0 measurement. In the ΛCDM+$\sum {m}_{\nu }$ model, we obtain the upper limits of the neutrino mass $\sum {m}_{\nu }\lt 0.123\,\mathrm{eV}$ (DH), $\sum {m}_{\nu }\lt 0.156\,\mathrm{eV}$ (NH), and $\sum {m}_{\nu }\lt 0.185\,\mathrm{eV}$ (IH) at the 95% C.L., using the Planck+BAO+SNe data combination. For the wCDM+$\sum {m}_{\nu }$ model and the CPL+$\sum {m}_{\nu }$ model, larger upper limits of $\sum {m}_{\nu }$ are obtained compared to those of the ΛCDM+$\sum {m}_{\nu }$ model. The most stringent constraint on the neutrino mass, $\sum {m}_{\nu }\lt 0.080\,\mathrm{eV}$ (DH), is derived in the HDE+$\sum {m}_{\nu }$ model. In addition, we find that the inclusion of the local measurement of the Hubble constant in the data combination leads to tighter constraints on the total neutrino mass in all these dark energy models.

Cite this article

Ming Zhang , Jing-Fei Zhang , Xin Zhang . Impacts of dark energy on constraining neutrino mass after Planck 2018[J]. Communications in Theoretical Physics, 2020 , 72(12) : 125402 . DOI: 10.1088/1572-9494/abbb84

1. Introduction

Neutrino oscillation experiments [1, 2] indicate that the three neutrino flavor eigenstates (νe, νμ, ντ) are actually quantum superpositions of the three mass eigenstates (ν1, ν2, ν3) with masses m1, m2, and m3. However, neutrino oscillation experiments cannot measure the absolute neutrino masses, but can only give the squared mass differences between the different mass eigenstates of neutrino. The solar and reactor experiments gave the result of Δm212 ≃ 7.54 × 10−5 eV2 and the atmospheric and accelerator beam experiments gave the result of $| {\rm{\Delta }}{m}_{31}^{2}| \simeq 2.46\times {10}^{-3}$ eV2 [3, 4], which indicates that there are two possible neutrino mass hierarchies, i.e. the normal hierarchy (NH) with m1 < m2 ≪ m3 and the inverted hierarchy (IH) with m3m1 < m2. The case of neglecting the neutrino mass splitting, namely m1 = m2 = m3, is called the degenerate hierarchy (DH).
Nevertheless, cosmological observations could provide a useful tool to measure the absolute neutrino total mass. With the decrease of the neutrino temperature, neutrino becomes non-relativistic at T ∼ 0.15 eV in the evolution of the Universe. Then the mass effect of neutrinos begins to appear, which leads to a non-negligible influence on the cosmic microwave background (CMB) and large-scale structure [5-11]. Therefore, we could extract much useful information about neutrino from cosmological observations.
Recently, the observational data of Planck 2018 have been released by the Planck collaboration, and according to the latest data the upper limit of the total neutrino mass is $\sum {m}_{\nu }\,\lt 0.24\,\mathrm{eV}$ (95% C.L., TT,TE,EE+lowE+lensing) [12]. Since the baryon acoustic oscillations (BAO) data at low redshifts can break the geometric degeneracy inherent in CMB, the combination of the acoustic scales measured by the CMB and BAO data can determine the background geometry sufficiently. Combining BAO data with CMB data, the neutrino mass can be constrained to be $\sum {m}_{\nu }\lt 0.12\,\mathrm{eV}$ (95% C.L., TT,TE,EE+lowE+lensing+BAO). Adding the Pantheon type Ia supernovae (SNe) luminosity distance measurements, the constraint only becomes slightly better, with the result still roughly $\sum {m}_{\nu }\lt 0.11\,\mathrm{eV}$ (95% C.L., TT,TE,EE+lowE+lensing+BAO+SNe). It is noted that these results are based on the ΛCDM+$\sum {m}_{\nu }$ model.
Therefore, we wish to investigate the impacts of dark energy on constraining the total neutrino mass. In this work, we consider some typical dark energy models, including the ΛCDM model, the wCDM model, the w0waCDM model (also known as the Chevallier-Polarski-Linder model or the CPL model) [13, 14], and the holographic dark energy (HDE) model [15-22]. In addition, we also consider the effects from the neutrino mass hierarchies (i.e. DH, NH, and IH) in our analysis.
More recently, some related studies of constraints on the total neutrino mass have been made; see, e.g. [23-67]. The cosmological constraints on the total neutrino mass in dynamical dark energy models have been discussed in, e.g. [46, 47], which indicates that the nature of dark energy can have a significant influence on the measurement of the total neutrino mass. As the latest CMB data have been released by the Planck collaboration, the results need to be updated. In this work, we employ the latest cosmological observations, including the CMB, BAO, SNe, and H0 data to make a new analysis.
In this work, we will use the recent local measurement of the Hubble constant H0, with the result of H0 = 74.03 ± 1.42 km s−1 Mpc−1 (68% C.L.), by Riess et al [68]. Note that this local measurement result is in more than 4σ tension with the result of the Planck 2018 observation assuming a six-parameter base-Λ CDM model. Thus, we also wish to investigate how the inclusion of the H0 local measurement would affect the measurement of the total neutrino mass in these dark energy models.
This paper is organized as follows. In section 2, we describe the methodology in our analysis. In section 3, we show the results and make some discussions. Finally, the conclusion is given in section 4.

2. Methodology

We take into account the neutrino mass splittings between the three active neutrinos. We employ the measurement results of neutrino oscillation experiments [3]
$\begin{eqnarray}{\rm{\Delta }}{m}_{21}^{2}\equiv {m}_{2}^{2}-{m}_{1}^{2}=7.54\times {10}^{-5}\,{\mathrm{eV}}^{2},\end{eqnarray}$
$\begin{eqnarray}| {\rm{\Delta }}{m}_{31}^{2}| \equiv | {m}_{3}^{2}-{m}_{1}^{2}| =2.46\times {10}^{-3}\,{\mathrm{eV}}^{2}.\end{eqnarray}$
The total neutrino mass $\sum {m}_{\nu }$ is the sum of three active neutrino mass. For the NH case, $\sum {m}_{\nu }$ is written as
$\begin{eqnarray}\sum {m}_{\nu }^{\mathrm{NH}}={m}_{1}+\sqrt{{m}_{1}^{2}+{\rm{\Delta }}{m}_{21}^{2}}+\sqrt{{m}_{1}^{2}+{\rm{\Delta }}{m}_{31}^{2}},\end{eqnarray}$
where m1 is a free parameter. For the IH case, $\sum {m}_{\nu }$ is written as
$\begin{eqnarray}\sum {m}_{\nu }^{\mathrm{IH}}=\sqrt{{m}_{3}^{2}+| {\rm{\Delta }}{m}_{31}^{2}| }+\sqrt{{m}_{3}^{2}+| {\rm{\Delta }}{m}_{31}^{2}| +{\rm{\Delta }}{m}_{21}^{2}}+{m}_{3},\end{eqnarray}$
where m3 is a free parameter. For the DH case, ignoring the neutrino mass splittings, $\sum {m}_{\nu }$ can be written as
$\begin{eqnarray}\sum {m}_{\nu }^{\mathrm{DH}}={m}_{1}+{m}_{2}+{m}_{3}=3m,\end{eqnarray}$
where m is a free parameter. Therefore, the lower bounds of $\sum {m}_{\nu }$ are 0 eV, 0.06 eV and 0.1 eV for DH, NH and IH, respectively. In this way, the total neutrino mass $\sum {m}_{\nu }$ as an additional parameter will be considered in our analysis.
In this paper, we make a global fit analysis on the different dark energy models, i.e. the ΛCDM+$\sum {m}_{\nu }$ model, the wCDM+$\sum {m}_{\nu }$ model, the CPL+$\sum {m}_{\nu }$ model, and the HDE+$\sum {m}_{\nu }$ model. We modify the publicly available Markov chain Monte-Carlo package CosmoMC [69] (that uses the Boltzmann solver CAMB [70]) to do the numerical calculations.
Here, we give a brief introduction to these dark energy models.

The ΛCDM+$\sum {m}_{\nu }$ model: The model containing a cosmological constant Λ and cold dark matter is called the ΛCDM model, which can fit various cosmological observations well. For the ΛCDM+$\sum {m}_{\nu }$ model, the parameter space vector is:

$\begin{eqnarray}{P}_{1}\equiv \left({\omega }_{b},{\omega }_{c},{{\rm{\Theta }}}_{{\rm{s}}},\tau ,{n}_{{\rm{s}}},\mathrm{ln}[{10}^{10}{A}_{{\rm{s}}}],\sum {m}_{\nu }\right),\end{eqnarray}$
where ${\omega }_{b}\equiv {{\rm{\Omega }}}_{b}{h}^{2}$ and ${\omega }_{c}\equiv {{\rm{\Omega }}}_{c}{h}^{2}$ represent baryon and cold dark matter densities, respectively, Θs is the ratio between sound horizon rs and angular diameter distance DA at the time of photon decoupling, τ is the optical depth to the reionization of the universe, ns and As are the power-law spectral index and amplitude of the power spectrum of primordial curvature perturbations, respectively, and $\sum {m}_{\nu }$ is the total neutrino mass.

The wCDM+$\sum {m}_{\nu }$ model: The wCDM model is the simplest dynamical dark energy model, in which the equation-of-state (EoS) parameter w(z) is assumed to be a constant. For the wCDM+$\sum {m}_{\nu }$ model, the parameter space vector is:

$\begin{eqnarray}{P}_{2}\equiv \left({\omega }_{b},{\omega }_{c},{{\rm{\Theta }}}_{{\rm{s}}},\tau ,{n}_{{\rm{s}}},\mathrm{ln}[{10}^{10}{A}_{{\rm{s}}}],{\text{}}w,\sum {m}_{\nu }\right).\end{eqnarray}$

The CPL+$\sum {m}_{\nu }$ model: For probing the evolution of w(z), the most widely used parameterization model is the CPL model [13, 14]. The form of w(z) in this model is given by

$\begin{eqnarray}w(z)={w}_{0}+{w}_{a}(1-a)={w}_{0}+{w}_{a}\displaystyle \frac{z}{1+z},\end{eqnarray}$
where w0 and wa are free parameters. So, for the CPL+$\sum {m}_{\nu }$ model, the parameter space vector is:
$\begin{eqnarray}{P}_{3}\equiv \left({\omega }_{b},{\omega }_{c},{{\rm{\Theta }}}_{{\rm{s}}},\tau ,{n}_{{\rm{s}}},\mathrm{ln}[{10}^{10}{A}_{{\rm{s}}}],{\text{}}{w}_{0},{\text{}}{w}_{{\text{}}a},\sum {m}_{\nu }\right).\end{eqnarray}$

The HDE+$\sum {m}_{\nu }$ model: The HDE model is built based on the the effective quantum field theory together with the holographic principle of quantum gravity. We can put an energy bound on the vacuum energy density, ${\rho }_{\mathrm{de}}{L}^{3}\leqslant {M}_{\mathrm{Pl}}^{2}L$, where MPl is the reduced Planck mass, which means that the total energy in a spatial region with size L should not exceed the mass of a black hole with the same size [71]. The largest length size that is compatible with this bound is the infrared cutoff size of this effective quantum field theory. An infrared scale can saturate that bound, and thus the dark energy density can be written as [15]

$\begin{eqnarray}{\rho }_{\mathrm{de}}=3{c}^{2}{M}_{\mathrm{Pl}}^{2}{L}^{-2},\end{eqnarray}$
where c is a dimensionless phenomenological parameter (note that here c is not the speed of light), which plays an important role in determining the properties of the HDE. The value of c determines the evolution of w. In the HDE model, the EoS can be expressed as
$\begin{eqnarray}w=-\displaystyle \frac{1}{3}-\displaystyle \frac{2}{3}\displaystyle \frac{\sqrt{{{\rm{\Omega }}}_{\mathrm{de}}}}{c}.\end{eqnarray}$
According to this equation, we can find that in the early times $w\to -1/3$ (since ${{\rm{\Omega }}}_{\mathrm{de}}\to 0$) and in the far future $w\to -1/3-2/(3c)$ (since ${{\rm{\Omega }}}_{\mathrm{de}}\to 1$). Thus, when c < 1, we can find that the EoS parameter w crosses −1 during the cosmological evolution. For the HDE+$\sum {m}_{\nu }$ model, the parameter space vector is:
$\begin{eqnarray}{P}_{4}\equiv \left({\omega }_{b},{\omega }_{c},{{\rm{\Theta }}}_{{\rm{s}}},\tau ,{n}_{{\rm{s}}},\mathrm{ln}[{10}^{10}{A}_{{\rm{s}}}],{\text{}}c,\sum {m}_{\nu }\right).\end{eqnarray}$

The observational data sets used in this work include CMB, BAO, SNe, and H0. Here we also briefly describe these observational data.

The CMB data:  We employ the CMB likelihood including the TT, TE, and EE spectra at  ≥ 30, the low- temperature Commander likelihood, and the low- SimAll EE likelihood, from the Planck 2018 release [12].

The BAO data: We employ the measurements of the BAO signals from different galaxy surveys, including the DR7 Main Galaxy Sample at the effective redshift of zeff = 0.15 [72], the six-degree-field Galaxy Survey (6dFGS) at zeff = 0.106 [73], and the latest BOSS data release 12 (DR12) in three redshift slices of zeff = 0.38, 0.51, and 0.61 [74].

The SNe data: We use the latest SNe data given the Pantheon Sample [75], which contains 1048 SNe data in the redshift range of 0.01 < z < 2.3.

The Hubble constant: We use the result of the direct measurement of the Hubble constant, with the result of H0 = 74.03 ± 1.42 km s−1 Mpc−1, given by Riess et al [68].

In this study, our basic data combination is Planck+BAO+SNe. In addition, in order to investigate the impacts of the H0 measurement on constraints on the neutrino mass, we also consider the data combination of Planck+BAO+SNe+H0.
Figure 1. Left: the one-dimensional marginalized posterior distributions for $\sum {m}_{\nu }$ using the Planck+BAO+SNe and Planck+BAO+SNe+H0 data combinations in the ΛCDM+$\sum {m}_{\nu }$ model. Right: the two-dimensional marginalized contours (1σ and 2σ) in the $\sum {m}_{\nu }$-H0 plane for three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case, by using Planck+BAO+SNe data combination in the ΛCDM+$\sum {m}_{\nu }$ model.

3. Results and discussion

In this section, we report the results of constraining the total neutrino mass from the Planck+BAO+SNe and Planck+BAO+SNe+H0 data combinations. In our analysis, several typical dark energy models, i.e. the ΛCDM+$\sum {m}_{\nu }$ model, the wCDM+$\sum {m}_{\nu }$ model, the CPL+$\sum {m}_{\nu }$ model, and the HDE+$\sum {m}_{\nu }$ model, are investigated. In the meantime, we compare the results of the three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case. The main results are listed in tables 1-4 and shown in figures 1-4. The best-fit values of χ2 in the various cases are also listed. The fit values of parameters are given at 68% C.L. (1σ), and the upper limits of the neutrino mass are given at 95% C.L. (2σ).
Figure 2. The two-dimensional marginalized contours (1σ and 2σ) in the $\sum {m}_{\nu }$-w and H0-w planes for three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case, by using Planck+BAO+SNe data combination in the wCDM+$\sum {m}_{\nu }$ model.
Table 1. Fitting results of the cosmological parameters in the ΛCDM+$\sum {m}_{\nu }$ model for three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case, using the Planck+BAO+SNe and Planck+BAO+SNe+H0 data combinations.
Data Planck+BAO+SNe Planck+BAO+SNe+H0
Mass ordering DH NH IH DH NH IH
H0 (km s−1 Mpc−1) 67.75 ± 0.49 67.48 ± 0.47 67.26 ± 0.45 68.40 ± 0.44 68.11 ± 0.43 67.88 ± 0.43
Ωm 0.3097 ± 0.0063 0.3126 ± 0.0063 0.3150 ± 0.0060 0.3015 ± 0.0056 0.3044 ± 0.0056 0.3069 ± 0.0056
σ8 ${0.812}_{-0.008}^{+0.013}$ ${0.801}_{-0.008}^{+0.011}$ ${0.793}_{-0.008}^{+0.010}$ ${0.813}_{-0.008}^{+0.010}$ ${0.801}_{-0.008}^{+0.009}$ ${0.792}_{-0.008}^{+0.009}$
$\sum {m}_{\nu }$ (eV) $\lt 0.123$ <0.156 <0.185 <0.082 <0.125 <0.160

χ2 3805.133 3807.205 3809.012 3821.466 3825.557 3828.810

3.1. Cases in different dark energy models

Firstly, we compare the constraint results in the different dark energy models from the Planck+BAO+SNe data combination. In table 1, we can obtain $\sum {m}_{\nu }\lt 0.123\,\mathrm{eV}$ for the DH case, $\sum {m}_{\nu }\lt 0.156\,\mathrm{eV}$ for the NH case, $\sum {m}_{\nu }\lt 0.185\,\mathrm{eV}$ for the IH case in the ΛCDM+$\sum {m}_{\nu }$ model (see figure 1). For the wCDM+$\sum {m}_{\nu }$ model, we have $\sum {m}_{\nu }\lt 0.155\,\mathrm{eV}$ (DH), $\sum {m}_{\nu }\,\lt 0.195\,\mathrm{eV}$ (NH), and $\sum {m}_{\nu }\lt 0.220\,\mathrm{eV}$ (IH) corresponding to w = −1.029 ± 0.035 (DH), w = −1.042 ± 0.035 (NH), and w = −1.051 ± 0.035 (IH), respectively (see table 2 and figure 2), and we find that the upper limits of $\sum {m}_{\nu }$ become larger, compared to the ΛCDM+$\sum {m}_{\nu }$ model. In the CPL+$\sum {m}_{\nu }$ model, the neutrino mass bounds are greatly relaxed (see table 3 and figure 3), and they are $\sum {m}_{\nu }\lt 0.247\,\mathrm{eV}$ (DH), $\sum {m}_{\nu }\lt 0.290\,\mathrm{eV}$ (NH), and $\sum {m}_{\nu }\lt 0.305\,\mathrm{eV}$ (IH). As is showed in figure 3, we find that a phantom dark energy (i.e. w < −1) or an early phantom dark energy (i.e. the quintom evolving from w < −1 to w > −1) is slightly more favored by current cosmological observations, which leads to the fact that a larger upper limit of $\sum {m}_{\nu }$ is obtained in the wCDM+$\sum {m}_{\nu }$ and CPL+$\sum {m}_{\nu }$ models. For the HDE+$\sum {m}_{\nu }$ model, an early quintessence dark energy with c < 1 (i.e. the quintom eVolving from w < −1 to w > −1) is favored, and we could obtain the most stringent upper limits of the neutrino mass with $\sum {m}_{\nu }\,\lt 0.080\,\mathrm{eV}$ (DH), $\sum {m}_{\nu }\lt 0.129\,\mathrm{eV}$ (NH), $\sum {m}_{\nu }\lt 0.163\,\mathrm{eV}$ (IH), as also shown in table 4 and figure 4.
Figure 3. The two-dimensional marginalized contours (1σ and 2σ) in the w0-wa plane for three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case, by using Planck+BAO+SNe and Planck+BAO+SNe+H0 data combinations in the CPL+$\sum {m}_{\nu }$ model.
Table 2. Fitting results of the cosmological parameters in the wCDM+$\sum {m}_{\nu }$ model for three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case, using the Planck+BAO+SNe and Planck+BAO+SNe+H0 data combinations.
Data Planck+BAO+SNe Planck+BAO+SNe+H0
Mass ordering DH NH IH DH NH IH
w −1.029 ± 0.035 −1.042 ± 0.035 −1.051 ± 0.035 −1.078 ± 0.033 −1.090 ± 0.033 $-{1.100}_{-0.031}^{+0.034}$
H0 (km s−1 Mpc−1) 68.27 ± 0.83 68.23 ± 0.83 68.21 ± 0.81 69.79 ± 0.73 69.74 ± 0.73 69.70 ± 0.74
Ωm 0.3064 ± 0.0078 0.3076 ± 0.0078 0.3084 ± 0.0076 0.2932 ± 0.0066 0.2945 ± 0.0066 0.2954 ± 0.0067
σ8 0.819 ± 0.015 ${0.811}_{-0.014}^{+0.015}$ 0.805 ± 0.014 ${0.834}_{-0.013}^{+0.015}$ ${0.826}_{-0.013}^{+0.014}$ 0.820 ± 0.014
$\sum {m}_{\nu }$ (eV) <0.155 <0.195 <0.220 <0.145 <0.183 <0.210

χ2 3805.053 3806.381 3807.724 3817.072 3818.757 3819.912
Table 3. Fitting results of the cosmological parameters in the CPL+$\sum {m}_{\nu }$ model for three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case, using the Planck+BAO+SNe and Planck+BAO+SNe+H0 data combinations.
Data Planck+BAO+SNe Planck+BAO+SNe+H0
Mass ordering DH NH IH DH NH IH
w0 −0.945 ± 0.087 −0.933 ± 0.089 −0.923 ± 0.089 −1.003 ± 0.082 −0.988 ± 0.086 −0.978 ± 0.088
wa $-{0.41}_{-0.30}^{+0.44}$ $-{0.52}_{-0.32}^{+0.46}$ $-{0.61}_{-0.33}^{+0.46}$ $-{0.38}_{-0.31}^{+0.41}$ $-{0.50}_{-0.33}^{+0.44}$ $-{0.60}_{-0.34}^{+0.45}$
H0 (km s−1 Mpc−1) 68.22 ± 0.83 68.19 ± 0.83 68.14 ± 0.84 69.78 ± 0.73 69.71 ± 0.74 69.69 ± 0.73
Ωm 0.3087 ± 0.0082 0.3102 ± 0.0083 0.3113 ± 0.0083 0.2948 ± 0.0068 0.2965 ± 0.0070 0.2976 ± 0.0069
σ8 ${0.819}_{-0.015}^{+0.018}$ ${0.813}_{-0.015}^{+0.018}$ ${0.808}_{-0.015}^{+0.018}$ ${0.835}_{-0.015}^{+0.017}$ ${0.828}_{-0.014}^{+0.017}$ ${0.823}_{-0.014}^{+0.017}$
$\sum {m}_{\nu }$ (eV) <0.247 <0.290 <0.305 <0.216 <0.255 <0.281

χ2 3804.644 3805.938 3806.531 3816.716 3817.806 3818.809
Table 4. Fitting results of the cosmological parameters in the HDE+$\sum {m}_{\nu }$ model for three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case, using the Planck+BAO+SNe and Planck+BAO+SNe+H0 data combinations.
Data Planck+BAO+SNe Planck+BAO+SNe+H0
Mass ordering DH NH IH DH NH IH
c ${0.645}_{-0.031}^{+0.027}$ ${0.632}_{-0.030}^{+0.026}$ ${0.623}_{-0.029}^{+0.025}$ ${0.608}_{-0.025}^{+0.023}$ 0.595 ± 0.024 ${0.587}_{-0.024}^{+0.022}$
H0 (km s−1 Mpc−1) 67.85 ± 0.81 67.79 ± 0.79 67.74 ± 0.80 69.38 ± 0.72 69.33 ± 0.71 69.27 ± 0.71
Ωm 0.3061 ± 0.0077 0.3077 ± 0.0076 0.3087 ± 0.0076 0.2927 ± 0.0065 0.2939 ± 0.0065 0.2951 ± 0.0065
σ8 0.797 ± 0.013 0.789 ± 0.013 0.783 ± 0.013 0.811 ± 0.013 0.803 ± 0.012 0.796 ± 0.12
$\sum {m}_{\nu }$ (eV) <0.080 <0.129 <0.163 <0.075 <0.123 <0.159

χ2 3822.977 3828.219 3830.980 3838.467 3845.127 3845.289
In addition, we can compare the best-fit χ2 values of these models, which are listed in tables 1-4. For the wCDM+$\sum {m}_{\nu }$ model, the χ2 values in the same neutrino mass hierarchy are slightly smaller than those of the ΛCDM+$\sum {m}_{\nu }$ model, at the price of adding one more parameter. We obtain the smallest χ2 values in the CPL+$\sum {m}_{\nu }$ model, since this model has the most free parameters. For the HDE+$\sum {m}_{\nu }$ model, the most stringent upper limits of $\sum {m}_{\nu }$ can be obtained, but the χ2 values are much larger than those of the ΛCDM+$\sum {m}_{\nu }$ model.
Figure 4. The two-dimensional marginalized contours (1σ and 2σ) in the H0-c and $\sum {m}_{\nu }$-c planes for three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case, by using Planck+BAO+SNe data combination in the HDE+$\sum {m}_{\nu }$ model.
For all these models, we discuss the fitting results in the different neutrino mass hierarchies. The prior of the lower bounds of $\sum {m}_{\nu }$ are 0 eV, 0.06 eV and 0.1 eV for DH, NH and IH, respectively, which can affect the constraint results of $\sum {m}_{\nu }$ significantly. In tables 1-4, the upper limits of $\sum {m}_{\nu }$ for the NH case are smaller than those for the IH case in these dark energy models. What's more, we find that the χ2 values in the NH case is slightly smaller than those in the IH case for all these models, which indicates that the NH case fits the current observations better than the IH case. This conclusion is still consistent with the previous studies [23, 44, 46, 49, 53, 54, 60, 61].

3.2. Adding the H0 measurement in data combination

In this subsection, we report the constraint results from the Planck+BAO+SNe+H0 data combination and investigate the impact of the H0 measurement on the fit results of $\sum {m}_{\nu }$. As is shown in table 1, we have $\sum {m}_{\nu }\lt 0.082\,\mathrm{eV}$ for the DH case, $\sum {m}_{\nu }\lt 0.125\,\mathrm{eV}$ for the NH case, $\sum {m}_{\nu }\lt 0.160\,\mathrm{eV}$ for the IH case in the ΛCDM+$\sum {m}_{\nu }$ model. Adding the H0 data leads to a higher H0 value in the cosmological fit. From the right panel of figure 1, we can see that $\sum {m}_{\nu }$ is anti-correlated with H0 in the ΛCDM+$\sum {m}_{\nu }$ model. Therefore, we obtain a smaller upper limit of $\sum {m}_{\nu }$ with the Planck+BAO+SNe+H0 data combination than that with the Planck+BAO+SNe data combination, which can be clearly seen in the left panel of figure 1.
With the Planck+BAO+SNe+H0 data combination, we have $\sum {m}_{\nu }\lt 0.145\,\mathrm{eV}$ (DH), $\sum {m}_{\nu }\lt 0.183\,\mathrm{eV}$ (NH), $\sum {m}_{\nu }\lt 0.210\,\mathrm{eV}$ (IH) in the wCDM+$\sum {m}_{\nu }$ model (see table 2); we have $\sum {m}_{\nu }\lt 0.216\,\mathrm{eV}$ (DH), $\sum {m}_{\nu }\lt 0.255\,\mathrm{eV}$ (NH), $\sum {m}_{\nu }\lt 0.281\,\mathrm{eV}$ (IH) in the CPL+$\sum {m}_{\nu }$ model (see table 3); we have $\sum {m}_{\nu }\lt 0.075\,\mathrm{eV}$ (DH), $\sum {m}_{\nu }\lt 0.123\,\mathrm{eV}$ (NH), $\sum {m}_{\nu }\lt 0.159\,\mathrm{eV}$ (IH) in the HDE+$\sum {m}_{\nu }$ model (see table 4). In all these models, we find that the inclusion of the H0 data gives a tighter constraint on $\sum {m}_{\nu }$.

4. Conclusion

In this paper, using the latest cosmological observations (including the Planck 2018 CMB data), we have obtained $\sum {m}_{\nu }\lt 0.123\,\mathrm{eV}$ (DH), $\sum {m}_{\nu }\lt 0.156\,\mathrm{eV}$ (NH), and $\sum {m}_{\nu }\,\lt 0.185\,\mathrm{eV}$ (IH) in the ΛCDM+$\sum {m}_{\nu }$ model with the Planck+BAO+SNe data combination. In addition, we also consider the influence of dynamical dark energy on the constraint results of $\sum {m}_{\nu }$. We investigate the cases of the wCDM+$\sum {m}_{\nu }$ model, the CPL+$\sum {m}_{\nu }$ model, and the HDE+$\sum {m}_{\nu }$ model, and we find that the nature of dark energy could significantly affect the constraints on the total neutrino mass. Compared to the ΛCDM+$\sum {m}_{\nu }$ model, the upper limits of the total neutrino mass become larger in the wCDM+$\sum {m}_{\nu }$ and CPL+$\sum {m}_{\nu }$ models. Using the Planck+BAO+SNe data combination, the most stringent upper limits of the neutrino mass, i.e. $\sum {m}_{\nu }\lt 0.080\,\mathrm{eV}$ (DH), $\sum {m}_{\nu }\lt 0.129\,\mathrm{eV}$ (NH), and $\sum {m}_{\nu }\lt 0.163\,\mathrm{eV}$ (IH), are obtained in the HDE+$\sum {m}_{\nu }$ model.
Comparing the values of χ2 between the NH and IH cases, it is found that the NH case fits the current cosmological observations better than the IH case, indicating that the neutrino mass hierarchy is more likely to be the NH case according to the current cosmological data. In addition, it is also found that the inclusion of the local measurement of the Hubble constant in the data combination will lead to a tighter constraint on the total neutrino mass for all the dark energy models considered in this work.

We thank Hai-Li Li, Jing-Zhao Qi, and Yun-He Li for helpful discussions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11975072, 11875102, 11835009, and 11690021), the Liaoning Revitalization Talents Program (Grant No. XLYC1905011), the Fundamental Research Funds for the Central Universities (Grant No. N2005030), and the Top- Notch Young Talents Program of China (Grant No. W02070050).

1
Fukuda Y (Super-Kamiokande Collaboration) 1998 Phys. Rev. Lett. 81 1562

DOI

2
Ahmad Q R (SNO Collaboration) 2002 Phys. Rev. Lett. 89 011301

DOI

3
Olive K A (Particle Data Group) 2014 Chin. Phys. C 38 090001

DOI

4
Xing Z Z 2020 Phys. Rep. 854 1 147

DOI

5
Abazajian K N (Topical Conveners: K.N. Abazajian, J.E. Carlstrom, A.T. Lee Collaboration) 2015 Astropart. Phys. 63 66

DOI

6
Lesgourgues J Pastor S 2006 Phys. Rep. 429 307

DOI

7
Wong Y Y Y 2011 Ann. Rev. Nucl. Part. Sci. 61 69

DOI

8
Lesgourgues J Pastor S 2012 Adv. High Energy Phys. 2012 608515

DOI

9
Lesgourgues J Pastor S 2014 New J. Phys. 16 065002

DOI

10
Archidiacono M Brinckmann T Lesgourgues J Poulin V 2017 J. Cosmol. Astropart. Phys. JCAP02(2017)052

DOI

11
Lattanzi M Gerbino M 2018 Front. Phys. 5 70

DOI

12
Aghanim N (Planck) 2020 Astron. Astrophys. 641A6

13
Chevallier M Polarski D 2001 Int. J. Mod. Phys. D 10 213

DOI

14
Linder E V 2003 Phys. Rev. Lett. 90 091301

DOI

15
Li M 2004 Phys. Lett. B 603 1

DOI

16
Huang Q G Li M 2004 J. Cosmol. Astropart. Phys. JCAP08(2004)013

DOI

17
Zhang J F Zhao M M Cui J L Zhang X 2014 Eur. Phys. J. C 74 3178

DOI

18
Wang S Wang Y Li M 2017 Phys. Rep. 696 1

DOI

19
Wang S Geng J J Hu Y L Zhang X 2015 Sci. China Phys. Mech. Astron. 58 019801

20
Cui J Xu Y Zhang J Zhang X 2015 Sci. China Phys. Mech. Astron. 58 110402

DOI

21
He D Z Zhang J F Zhang X 2017 Sci. China Phys. Mech. Astron. 60 039511

DOI

22
Xu Y Y Zhang X 2016 Eur. Phys. J. C 76 588

DOI

23
Roy Choudhury S Hannestad S 2019 JCAP JCAP07(2020)03

24
Reid B A Verde L Jimenez R Mena O 2010 J. Cosmol. Astropart. Phys. JCAP01(2010)003

DOI

25
Thomas S A Abdalla F B Lahav O 2010 Phys. Rev. Lett. 105 031301

DOI

26
Carbone C Verde L Wang Y Cimatti A 2011 J. Cosmol. Astropart. Phys. JCAP03(2011)030

DOI

27
Li H Zhang X 2012 Phys. Lett. B 713 160

DOI

28
Li Y H Wang S Li X D Zhang X 2013 J. Cosmol. Astropart. Phys. JCAP02(2013)033

DOI

29
Audren B Lesgourgues J Bird S Haehnelt M G Viel M 2013 J. Cosmol. Astropart. Phys. JCAP01(2013)026

DOI

30
Riemer-Sørensen S Parkinson D Davis T M 2014 Phys. Rev. D 89 103505

DOI

31
Zhang J F Li Y H Zhang X 2015 Phys. Lett. B 740 359

DOI

32
Zhang J F Li Y H Zhang X 2014 Eur. Phys. J. C 74 2954

DOI

33
Zhang J F Geng J J Zhang X 2014 J. Cosmol. Astropart. Phys. JCAP10(2014)044

34
Palanque-Delabrouille N 2015 J. Cosmol. Astropart. Phys. JCAP02(2015)045

DOI

35
Li Y H Zhang J F Zhang X 2015 Phys. Lett. B 744 213

DOI

36
Zhang J F Zhao M M Li Y H Zhang X 2015 J. Cosmol. Astropart. Phys. JCAP04(2015)038

DOI

37
Geng C Q Lee C C Myrzakulov R Sami M Saridakis E N 2016 J. Cosmol. Astropart. Phys. JCAP01(2016)049

DOI

38
Chen Y Xu L 2016 Phys. Lett. B 752 66

DOI

39
Allison R Caucal P Calabrese E Dunkley J Louis T 2015 Phys. Rev. D 92 123535

DOI

40
Cuesta A J Niro V Verde L 2016 Phys. Dark Univ. 13 77

DOI

41
Chen Y Ratra B Biesiada M Li S Zhu Z H 2016 Astrophys. J. 829 61

DOI

42
Lu J Liu M Wu Y Wang Y Yang W 2016 Eur. Phys. J. C 76 679

DOI

43
Kumar S Nunes R C 2016 Phys. Rev. D 94 123511

DOI

44
Xu L Huang Q G 2018 Sci. China Phys. Mech. Astron. 61 039521

DOI

45
Vagnozzi S Giusarma E Mena O Freese K Gerbino M Ho S Lattanzi M 2017 Phys. Rev. D 96 123503

DOI

46
Zhang X 2017 Sci. China Phys. Mech. Astron. 60 060431

DOI

47
Zhang X 2016 Phys. Rev. D 93 083011

DOI

48
Lorenz C S Calabrese E Alonso D 2017 Phys. Rev. D 96 043510

DOI

49
Zhao M M Zhang J F Zhang X 2018 Phys. Lett. B 779 473

DOI

50
Vagnozzi S Dhawan S Gerbino M Freese K Goobar A Mena O 2018 Phys. Rev. D 98 083501

DOI

51
Wang L F Zhang X N Zhang J F Zhang X 2018 Phys. Lett. B 782 87

DOI

52
Zhang J F Wang B Zhang X 2020 Sci. China Phys. Mech. Astron. 63 280411

DOI

53
Guo R Y Zhang J F Zhang X 2018 Chin. Phys. C 42 095103

DOI

54
Zhao M Guo R He D Zhang J Zhang X 2020 Sci. China Phys. Mech. Astron. 63 230412

DOI

55
Loureiro A 2019 Phys. Rev. Lett. 123 081301

DOI

56
Huang Q G Wang K Wang S 2016 Eur. Phys. J. C 76 489

DOI

57
Bellomo N Bellini E Hu B Jimenez R Pena-Garay C Verde L 2017 J. Cosmol. Astropart. Phys. JCAP02(2017)043

DOI

58
Hu B Torrado J 2015 Phys. Rev. D 91 064039

DOI

59
Xu L 2016 J. Cosmol. Astropart. Phys. JCAP08(2016)059

DOI

60
Wang S Wang Y F Xia D M Zhang X 2016 Phys. Rev. D 94 083519

DOI

61
Feng L Li H L Zhang J F Zhang X 2020 Sci. China Phys. Mech. Astron. 63 220401

DOI

62
Diaz Rivero A Miranda V Dvorkin C 2019 Phys. Rev. D 100 063504

DOI

63
Miranda V Dvorkin C 2018 Phys. Rev. D 98 043537

DOI

64
Ballardini M Braglia M Finelli F Paoletti D Starobinsky A A Umiltš C 2020 arXiv:2004.14349 [astro-ph.CO]

65
Hagstotz S de Salas P F Gariazzo S Gerbino M Lattanzi M Vagnozzi S Freese K Pastor S 2020 arXiv:2003.02289 [astro-ph.CO]

66
Vagnozzi S 2019 arXiv:1907.08010 [astro-ph.CO]

67
Giusarma E Vagnozzi S Ho S Ferraro S Freese K Kamen-Rubio R Luk K B 2018 Phys. Rev. D 98 123526

DOI

68
Riess A G Casertano S Yuan W Macri L M Scolnic D 2019 Astrophys. J. 876 85

DOI

69
Lewis A Bridle S 2002 Phys. Rev. D 66 103511

DOI

70
Lewis A Challinor A Lasenby A 2000 Astrophys. J. 538 473

DOI

71
Cohen A G Kaplan D B Nelson A E 1999 Phys. Rev. Lett. 82 4971

DOI

72
Ross A J Samushia L Howlett C Percival W J Burden A Manera M 2015 Mon. Not. R. Astron. Soc. 449 835

DOI

73
Beutler F 2011 Mon. Not. R. Astron. Soc. 416 3017

DOI

74
Alam S (BOSS Collaboration) 2017 Mon. Not. R. Astron. Soc. 470 2617

DOI

75
Scolnic D M 2018 Astrophys. J. 859 101

DOI

Outlines

/