1. Introduction
2. The spectral analysis
2.1. The exact one-form
2.2. The three important functions ${\{{G}_{j}(x,t,\eta )\}}_{1}^{3}$
Figure 1. The three contours γ1, γ2, γ3 in the (x, t)-domain. |
Figure 2. The areas Li, i = 1,…,4 division on the complex η-plane. |
2.3. The other properties of the eigenfunctions
The functions
• | det Gj(x, t, η) = 1, j = 1,2,3, |
• | ${\left[{G}_{1}\right]}_{1}\,{is}\,{analytic}\,{for}$ $\left\{\begin{array}{l}\eta \in {L}_{1},\,{and}\,{continues}\,{to}\,{\bar{L}}_{1},\,\alpha \gt \beta ,\\ \eta \in {L}_{4},\,{and}\,{continues}\,{to}\,{\bar{L}}_{4},\,\alpha \lt \beta ,\end{array}\right.$ |
• | ${\left[{G}_{1}\right]}_{2}\,{is}\,{analytic}\,{for}$ $\left\{\begin{array}{l}\eta \in {L}_{3},\,{and}\,{continues}\,{to}\,{\bar{L}}_{3},\,\alpha \gt \beta ,\\ \eta \in {L}_{2},\,{and}\,{continues}\,{to}\,{\bar{L}}_{2},\,\alpha \lt \beta ,\end{array}\right.$ |
• | ${\left[{G}_{2}\right]}_{1}\,{is}\,{analytic}\,{for}$ $\left\{\begin{array}{l}\eta \in {L}_{2},\,{and}\,{continues}\,{to}\,{\bar{L}}_{2},\,\alpha \gt \beta ,\\ \eta \in {L}_{3},\,{and}\,{continues}\,{to}\,{\bar{L}}_{3},\,\alpha \lt \beta ,\end{array}\right.$ |
• | ${\left[{G}_{2}\right]}_{2}\,{is}\,{analytic}\,{for}$ $\left\{\begin{array}{l}\eta \in {L}_{4},\,{and}\,{continues}\,{to}\,{\bar{L}}_{4},\,\alpha \gt \beta ,\\ \eta \in {L}_{1},\,{and}\,{continues}\,{to}\,{\bar{L}}_{1},\,\alpha \lt \beta ,\end{array}\right.$ |
• | ${\left[{G}_{3}\right]}_{1}\,{is}\,{analytic}\,{for}$ $\left\{\begin{array}{l}\eta \in {L}_{3}\cup {L}_{4}\,{and}\,{continues}\,{to}\,{\bar{L}}_{3}\cup {\bar{L}}_{4},\alpha \gt \beta ,\\ \eta \in {L}_{1}\cup {L}_{2}\,{and}\,{continues}\,{to}\,{\bar{L}}_{1}\cup {\bar{L}}_{2},\alpha \lt \beta ,\end{array}\right.$ |
• | ${\left[{G}_{3}\right]}_{2}\,{is}\,{analytic}\,{for}$ $\left\{\begin{array}{l}\eta \in {L}_{1}\cup {L}_{2}\,{and}\,{continues}\,{to}\,{\bar{L}}_{1}\cup {\bar{L}}_{2},\alpha \gt \beta ,\\ \eta \in {L}_{3}\cup {L}_{4}\,{and}\,{continues}\,{to}\,{\bar{L}}_{3}\cup {\bar{L}}_{4},\alpha \lt \beta ,\end{array}\right.$ |
• | As η → ∞ , ${\left[{G}_{j}\right]}_{1}(x,t,\eta )\to {\left(\mathrm{1,0}\right)}^{{\rm{T}}}$, ${\left[{G}_{j}\right]}_{2}(x,t,\eta )\to {\left(\mathrm{0,1}\right)}^{{\rm{T}}}.$ |
Indeed, according to the definition of function Gj(x, t, η) in equation (
It follows from equation (
• | $\left(\begin{array}{c}s(\zeta )\\ f(\bar{\zeta })\end{array}\right)={\left[{G}_{3}\right]}_{2}^{{L}_{1}\cup {L}_{2}}(0,0,\eta )$ $=\,\left(\begin{array}{c}{\left({G}_{3}\right)}_{12}^{{L}_{1}\cup {L}_{2}}(0,t,\eta )\\ {\left({G}_{3}\right)}_{22}^{{L}_{1}\cup {L}_{2}}(0,t,\eta )\end{array}\right),$ |
• | $\left(\begin{array}{c}-{{\rm{e}}}^{\tfrac{2{\rm{i}}}{{\left(\alpha -\beta \right)}^{2}}{\eta }^{4}T}S(\eta )\\ \overline{F(\bar{\eta })})\end{array}\right)={\left[{G}_{1}\right]}_{2}^{{L}_{2}\cup {L}_{4}}(t,\eta )$ $=\,\left(\begin{array}{c}{\left({G}_{1}\right)}_{12}^{{L}_{2}\cup {L}_{4}}(t,\eta )\\ {\left({G}_{1}\right)}_{22}^{{L}_{2}\cup {L}_{4}}(t,\eta )\end{array}\right),$ |
• | f( − η) = f(η), s( − η) = − s(η), |
• | F( − η) = F(η), S( − η) = − S(η), |
• | $\det \psi (\eta )=f(\eta )\overline{f(\bar{\eta })}-s(\eta )\overline{s(\bar{\eta })}=1,\quad {for}\,\eta \in {\mathbb{R}},$ |
• | $\det \phi (\eta )=1,{for}\,\eta \in {\mathbb{C}}\,(\mathrm{Im}\tfrac{2{\eta }^{4}}{{\left(\alpha -\beta \right)}^{2}}=0,{if}\,T=\infty ),$ |
• | f(η) = 1 + O(η−1), s(η) = O(η−1), ${as}\,\eta \to \infty ,\mathrm{Im}\tfrac{{\eta }^{2}}{\alpha -\beta }\gt 0,$ |
• | F(η) = 1 + O(η−1), S(η) = O(η−1), ${as}\,\eta \to \infty ,\mathrm{Im}\tfrac{2{\eta }^{4}}{{\left(\alpha -\beta \right)}^{2}}\gt 0.$ |
2.4. The basic RH problem
For α > β, set $q(x,t)\in {\mathbb{S}}$, and the function W(x, t, η) is given by equation (
From equations (
One makes assumptions about the simple zeros of functions f(η) and h(η) as follows
• | f(η) enjoys 2a simple zeros ${\{{\varsigma }_{j}\}}_{j=1}^{2a}$, 2a = 2a1 + 2a2. For α > β, if ${\{{\varsigma }_{j}\}}_{1}^{2{a}_{1}}\in {L}_{1}$, then ${\{{\bar{\varsigma }}_{j}\}}_{1}^{2{a}_{2}}\in {L}_{3}$. For α < β, if ${\{{\varsigma }_{j}\}}_{1}^{2{a}_{1}}\in {L}_{4}$, then ${\{{\bar{\varsigma }}_{j}\}}_{1}^{2{a}_{2}}\in {L}_{2}$. |
• | h(η) enjoys 2b simple zeros ${\{{\zeta }_{j}\}}_{j=1}^{2b}$, 2b = 2b1 + 2b2. For α > β, if ${\{{\zeta }_{j}\}}_{1}^{2{b}_{1}}\in {L}_{4}$, then ${\{{\bar{\zeta }}_{j}\}}_{1}^{2{b}_{2}}\in {L}_{2}$. For α < β, if ${\{{\zeta }_{j}\}}_{1}^{2{b}_{1}}\in {L}_{1}$, then ${\{{\bar{\zeta }}_{j}\}}_{1}^{2{b}_{2}}\in {L}_{3}$. |
• | The intersection of simple zeros of h(η) and f(η) is empty. |
Let $\dot{h}(\eta )=\tfrac{{\rm{d}}{h}}{{\rm{d}}\eta }$, one enjoys the following residue conditions:
One only shows the equation (
2.5. The inverse problem
i | (i) One utilizes any one of the functions ${\{{G}_{j}(x,t,\eta )\}}_{1}^{3}$ to calculate w(x, t) by $\begin{eqnarray*}w(x,t)=\mathop{\mathrm{lim}}\limits_{\lambda \to \infty }{\left[\eta {G}_{j}(x,t,\eta )\right]}_{21}.\end{eqnarray*}$ |
ii | (ii) One gets Ω(x, t) from equation ( |
iii | (iii) One computes potential function q(x, t) by equation ( |
2.6. The global relation
3. The functions f(η), s(η), F(η) and S(η)
(f(η) and s(η)) Let ${u}_{0}(x)=u(x,0)\in {\mathbb{S}}$, one defines the mapping
The f(η) and s(η) possess the properties as following
i | (i) f(η), s(η) are analytic and bounded for $\mathrm{Im}\tfrac{1}{\alpha -\beta }{\eta }^{2}\gt 0$ and continuous for $\mathrm{Im}\tfrac{1}{\alpha -\beta }{\eta }^{2}\geqslant 0$. |
ii | (ii) $f(\eta )=1\,+\,O\left(\tfrac{1}{\eta }\right),s(\eta )=O\left(\tfrac{1}{\eta }\right)$ as η → ∞, $\mathrm{Im}\tfrac{1}{\alpha -\beta }{\eta }^{2}\geqslant 0$. |
iii | (iii) $f(\eta )\overline{f(\bar{\eta })}-s(\eta )\overline{s(\bar{\eta })}=1$, ${\eta }^{2}\in {\mathbb{R}}$. |
iv | (iv) f(− η) = f(η), s(− η) = − s(η), $\mathrm{Im}\tfrac{1}{\alpha -\beta }{\eta }^{2}\geqslant 0$. |
v | (v) The inverse mapping of ${{\mathbb{Y}}}_{1}$ is ${{\mathbb{Y}}}_{1}^{-1}={{\mathbb{Z}}}_{1}\,:\{f(\eta ),s(\eta )\}\,\to \{{u}_{0}(x)\}$, which is defined by $\begin{eqnarray*}\begin{array}{rcl}{u}_{0}(x) & = & -\displaystyle \frac{2{\rm{i}}}{\alpha -\beta }w(x){{\rm{e}}}^{-2{\rm{i}}\alpha {\displaystyle \int }_{0}^{x}| w(\xi ){| }^{2}{\rm{d}}\xi },\\ w(x) & = & \mathop{\mathrm{lim}}\limits_{\eta \to \infty }{\left[\eta {W}^{(x)}(x,\eta )\right]}_{21},\end{array}\end{eqnarray*}$ where W(x)(x, η) admits RH problem as follows. |
• | ${W}^{(x)}(x,\eta )=\left\{\begin{array}{l}{W}_{-}^{(x)}(x,\eta ),\mathrm{Im}\tfrac{1}{\alpha -\beta }{\eta }^{2}\leqslant 0,\\ {W}_{+}^{(x)}(x,\eta ),\mathrm{Im}\tfrac{1}{\alpha -\beta }{\eta }^{2}\geqslant 0,\end{array}\right.$ is a section analytic function. |
• | ${W}_{-}^{(x)}(x,\eta )={W}_{+}^{(x)}(x,\eta ){\left({H}^{(x)}(x,\eta )\right)}^{-1}$, ${\eta }^{2}\in {\mathbb{R}}$, and $\begin{eqnarray}{H}^{(x)}(x,\eta )=\left(\begin{array}{cc}1 & -\theta (\eta ){{\rm{e}}}^{-\tfrac{2{\rm{i}}}{\alpha -\beta }{\eta }^{2}x}\\ \overline{\theta (\bar{\eta })}{{\rm{e}}}^{\tfrac{2{\rm{i}}}{\alpha -\beta }{\eta }^{2}x} & 1-| \theta (\eta ){| }^{2}\end{array}\right).\end{eqnarray}$ |
• | ${W}^{(x)}(x,\eta )={\boldsymbol{I}}+O\left(\tfrac{1}{\eta }\right),\eta \to \infty .$ |
• | f(η) possesses 2a simple zeros ${\{{\varsigma }_{j}\}}_{1}^{2a}$, 2a = 2a1 + 2a2, such that $\mathrm{Im}\tfrac{1}{\alpha -\beta }{\varsigma }_{j}^{2}\gt 0,j=1,2,\ \cdots ,\ 2{a}_{1}$, and $\mathrm{Im}\tfrac{1}{\alpha -\beta }{\varsigma }_{j}^{2}\,\lt 0,j=1,2,\ \cdots ,\ 2{a}_{2}$. |
• | The first column of ${W}_{+}^{(x)}(x,\eta )$ enjoys simple poles at $\eta ={\{{\bar{\varsigma }}_{j}\}}_{1}^{2{a}_{2}}$. The second column of ${W}_{-}^{(x)}(x,\eta )$ enjoys simple poles at $\eta ={\{{\varsigma }_{j}\}}_{1}^{2{a}_{1}}$. The relevant residue expression is $\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[{W}^{(x)}(x,\eta )\right]}_{1},{\varsigma }_{j}\}\\ \quad =\,\displaystyle \frac{{{\rm{e}}}^{\tfrac{2{\rm{i}}}{\alpha -\beta }{\varsigma }_{j}^{2}x}}{\dot{f}({\varsigma }_{j})s({\varsigma }_{j})}{\left[{W}^{(x)}(x,{\varsigma }_{j})\right]}_{2},j=1,2,\ \cdots ,\ 2{a}_{1},\end{array}\end{eqnarray}$ $\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[{W}^{(x)}(x,\eta )\right]}_{2},{\bar{\varsigma }}_{j}\}\\ \quad =\displaystyle \frac{{{\rm{e}}}^{-\tfrac{2{\rm{i}}}{\alpha -\beta }{\overline{\varsigma }}_{j}^{2}x}}{\overline{\dot{f}({\varsigma }_{j})}\overline{s({\varsigma }_{j})}}{\left[{W}^{(x)}(x,{\bar{\varsigma }}_{j})\right]}_{1},j=1,2,\ \cdots ,\ 2{a}_{2}.\end{array}\end{eqnarray}$ |
(i)–(iv) follow from the investigation in section
(F(η) and S(η)) Let ${v}_{0}(t),{v}_{1}(t)\in {\mathbb{S}}$, the mapping
The F(η) and S(η) possess the properties as follows
i | (i) F(η), S(η) are analytic and bounded for $\mathrm{Im}\tfrac{2}{{\left(\alpha -\beta \right)}^{2}}{\eta }^{4}\,\geqslant 0$, if T = ∞, the F(η), S(η) are defined only for $\mathrm{Im}\tfrac{2}{{\left(\alpha -\beta \right)}^{2}}{\eta }^{4}\geqslant 0$. |
ii | (ii) $F(\eta )=1\,+\,O\left(\tfrac{1}{\eta }\right),S(\eta )=O\left(\tfrac{1}{\eta }\right)$ as η → ∞ , $\mathrm{Im}\tfrac{2}{{\left(\alpha -\beta \right)}^{2}}{\eta }^{4}\geqslant 0$. |
iii | (iii) $F(\eta )\overline{F(\bar{\eta })}-S(\eta )\overline{S(\bar{\eta })}=1$, $\eta \in {\mathbb{C}}({\eta }^{4}\in {\mathbb{R}},\,{if}\,T=\infty )$. |
iv | (iv) F(−η) = F(η), S(−η) = − S(η), $\mathrm{Im}\tfrac{2}{{\left(\alpha -\beta \right)}^{2}}{\eta }^{4}\geqslant 0$. |
v | (v) The inverse mapping of ${{\mathbb{Y}}}_{2}$ is ${{\mathbb{Y}}}_{2}^{-1}={{\mathbb{Z}}}_{2}\,:\{F(\eta ),S(\eta )\}\to \{{v}_{0}(t),{v}_{1}(t)\}$, which is defined by $\begin{eqnarray}\begin{array}{rcl}{v}_{0}(t) & = & -\displaystyle \frac{2{\rm{i}}}{\alpha -\beta }{w}_{12}^{(1)}(t){{\rm{e}}}^{-2{\rm{i}}{\displaystyle \int }_{0}^{t}{{\rm{\Omega }}}_{2}(\tau ){\rm{d}}\tau },\\ {v}_{1}(t) & = & \left[\displaystyle \frac{4}{{\left(\alpha -\beta \right)}^{2}}{w}_{21}^{(3)}(t)-{v}_{0}(t){\bar{v}}_{0}(t){w}_{21}^{(1)}(t)\right]{{\rm{e}}}^{-2{\rm{i}}{\displaystyle \int }_{0}^{t}{{\rm{\Omega }}}_{2}(\tau ){\rm{d}}\tau }\\ & & -\displaystyle \frac{2{\rm{i}}}{\alpha -\beta }{v}_{0}(t){w}_{11}^{(2)}(t)-\displaystyle \frac{{\rm{i}}\alpha }{2}| {v}_{0}(t){| }^{2}{\bar{v}}_{0},\end{array}\end{eqnarray}$ where $\begin{eqnarray*}\begin{array}{rcl}{{\rm{\Omega }}}_{2}(\tau ) & = & 2(-{\alpha }^{2}+\alpha \beta -{\beta }^{2})| {w}_{21}^{(1)}{| }^{4}\\ & & +\displaystyle \frac{2\alpha }{{\left(\alpha -\beta \right)}^{3}}({\bar{w}}_{21}^{(1)}{w}_{21}^{(3)}+{w}_{21}^{(1)}{\bar{w}}_{21}^{(3)})\\ & & -\displaystyle \frac{4\alpha }{\alpha -\beta }| {w}_{21}^{(1)}{| }^{4}-\displaystyle \frac{4\alpha }{\alpha -\beta }| {w}_{21}^{(1)}{| }^{2}\mathrm{Re}[{w}_{11}^{(2)}],\end{array}\end{eqnarray*}$ and the functions w(j)(t), j = 1, 2, 3 are determined by $\begin{eqnarray*}\begin{array}{rcl}{W}^{(t)}(t,\eta ) & = & {\boldsymbol{I}}+\displaystyle \frac{{w}^{(1)}(t)}{\eta }+\displaystyle \frac{{w}^{(2)}(t)}{{\eta }^{2}}+\displaystyle \frac{{w}^{(3)}(t)}{{\eta }^{3}}\\ & & +O\left(\displaystyle \frac{1}{{\eta }^{4}}\right),\eta \to \infty ,\end{array}\end{eqnarray*}$ where W(t)(t, η) admits RH problem as follows |
• | ${W}^{(t)}(t,\eta )=\left\{\begin{array}{ll}{W}_{-}^{(t)}(t,\eta ), & \mathrm{Im}\tfrac{2}{{\left(\alpha -\beta \right)}^{2}}{\eta }^{4}\leqslant 0,\\ {W}_{+}^{(t)}(t,\eta ), & \mathrm{Im}\tfrac{2}{{\left(\alpha -\beta \right)}^{2}}{\eta }^{4}\geqslant 0,\end{array}\right.$ is a section analytic function. |
• | ${W}_{-}^{(t)}(t,\eta )={W}_{+}^{(t)}(t,\eta ){H}^{(t)}(t,\eta )$, ${\eta }^{4}\in {\mathbb{R}}$, and $\begin{eqnarray}{H}^{(t)}(t,\eta )=\left(\begin{array}{cc}1 & -\tfrac{S(\eta )}{\overline{F(\overline{\eta })}}{{\rm{e}}}^{-\tfrac{4{\rm{i}}}{{\left(\alpha -\beta \right)}^{2}}{\eta }^{4}t}\\ \tfrac{\overline{S(\overline{\eta })}}{F(\eta )}{{\rm{e}}}^{\tfrac{4{\rm{i}}}{{\left(\alpha -\beta \right)}^{2}}{\eta }^{4}t} & \tfrac{1}{F(\eta )\overline{F(\overline{\eta })}}\end{array}\right).\end{eqnarray}$ |
• | ${W}^{(t)}(T,\eta )={\boldsymbol{I}}+O\left(\tfrac{1}{\eta }\right),\eta \to \infty .$ |
• | F(η) possesses 2k simple zeros ${\{{\varepsilon }_{j}\}}_{1}^{2k}$, 2k = 2k1 + 2k2 such that $\mathrm{Im}\tfrac{2}{{\left(\alpha -\beta \right)}^{2}}{\varepsilon }_{j}^{4}\gt 0,j\,=\,1,2,\cdots ,2{k}_{1}$, and $\mathrm{Im}\tfrac{2}{{\left(\alpha -\beta \right)}^{2}}{\varepsilon }_{j}^{4}\lt 0,j\,=\,1,2,\cdots ,2{k}_{2}$. |
• | The first column of ${W}_{+}^{(t)}(t,\eta )$ enjoys simple poles at $\eta ={\{{\bar{\varepsilon }}_{j}\}}_{1}^{2{k}_{2}}$, the second column of ${W}_{-}^{(t)}(t,\eta )$ enjoys simple poles at $\eta ={\{{\varepsilon }_{j}\}}_{1}^{2{k}_{2}}$. The relevant residue expression is $\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[{W}^{(t)}(t,\eta )\right]}_{1},{\varepsilon }_{j}\}\\ =\,\displaystyle \frac{{{\rm{e}}}^{\tfrac{4{\rm{i}}}{{\left(\alpha -\beta \right)}^{2}}{\varepsilon }_{j}^{4}t}}{\dot{F}({\varepsilon }_{j})S({\varepsilon }_{j})}{\left[{W}^{(t)}(t,{\varepsilon }_{j})\right]}_{2},j=1,2,\cdots ,2{k}_{1},\end{array}\end{eqnarray}$ $\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[{W}^{(t)}(t,\eta )\right]}_{2},{\bar{\varepsilon }}_{j}\}\\ =\,\displaystyle \frac{{{\rm{e}}}^{-\tfrac{4{\rm{i}}}{{\left(\alpha -\beta \right)}^{2}}{\overline{\varepsilon }}_{j}^{4}t}}{\overline{\dot{F}({\bar{\varepsilon }}_{j})}\overline{S({\bar{\varepsilon }}_{j})}}{\left[{W}^{(t)}(t,{\bar{\varepsilon }}_{j})\right]}_{1},j=1,2,\ \cdots ,\ 2{k}_{2}.\end{array}\end{eqnarray}$ |
(i)–(iv) follow from the investigate in section
4. The RH problem
Let ${u}_{0}(x)\in {\mathbb{S}}({{\rm{R}}}^{+})$, the matrix functions $\Psi$(η) and φ(η) in terms of f(η), s(η), F(η), S(η) are given by equation (
• | W(x, t, η) is the slice analytic function for η ∈ Lk and continuous to ${\bar{L}}_{k},(k=1,\ \ldots ,\ 4)$. |
• | W(x, t, η) jump arises on the curves ${\{{\bar{L}}_{k}\}}_{1}^{4}$ and admits the jump relation given by theorem $\begin{eqnarray*}{W}_{-}(x,t,\eta )={W}_{+}(x,t,\eta )H(x,t,\eta ),\eta \in {\bar{L}}_{k},k=1,\ \ldots ,\ 4,\end{eqnarray*}$ |
• | $W(x,t,\eta )={\boldsymbol{I}}+{\rm{O}}\left(\tfrac{1}{\eta }\right),\eta \to \infty $. |
• | W(x, t, η) meets the residue conditions given by proposition |
Indeed, one can manifest the above RH problem following [4].