Welcome to visit Communications in Theoretical Physics,
Condensed Matter Theory

Superconducting gap ratio from strange metal phase in the absence of quasiparticles

  • Wenhe Cai 1 ,
  • Xian-Hui Ge , 1, 2
Expand
  • 1Department of Physics, Shanghai University, Shanghai 200444, China
  • 2Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China

Received date: 2020-09-26

  Revised date: 2020-11-23

  Accepted date: 2020-12-06

  Online published: 2021-02-23

Copyright

© 2021 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

A lattice model for strongly interacting electrons motivated by a rank-3 tensor model provides a tool for understanding the pairing mechanism of high-temperature superconductivity. This Sachdev-Ye-Kitaev-like model describes the strange metal phase in the cuprate high temperature superconductors. Our calculation indicates that the superconducting gap ratio in this model is higher than the ratio in the BCS theory due to the coupling term and the spin operator. Under certain conditions, the ratio also agrees with the BCS theory. Our results relate to the case of strong coupling, so it may pave the way to gaining insight into the cuprate high temperature superconductors.

Cite this article

Wenhe Cai , Xian-Hui Ge . Superconducting gap ratio from strange metal phase in the absence of quasiparticles[J]. Communications in Theoretical Physics, 2021 , 73(2) : 025701 . DOI: 10.1088/1572-9494/abd0e9

1. Introduction

The strange metal phase do not have long-lived quasiparticles. A toy model called Sachdev-Ye-Kitaev (SYK) model captures the feature of the strange metal phase, such as the absence of quasiparticles. The SYK model is a disordered and strongly-coupled quantum system composed by N Majorana fermions with Gaussian-distributed random coupling [1-3]. The connection between the SYK model and the gravity theory with a near-horizon AdS2 geometry could be obtained in [4-6]. Various applications of SYK model have been presented, such as topological SYK model [7], SYK-like models [8-15], transport [16-19], SYK spectral density [20-25], supersymmetric SYK model [26-30], complexity[31],quantum choas [6, 32], the higher dimensional generalization [33-36] and the bulk gravity dual of SYK models [37-41].
Recently, it was found that the SYK model could be a powerful method to study strong coupling superconductivity. Actually, the conventional superconductors can be described by the BCS theory. However, the BCS theory is not capable of explaining the high temperature superconductor. The theories of high-temperature superconductivity extend the canonical BCS theory to strong electron-phonon coupling. There are some progresses on high-temperature superconductivity within the framework of SYK dots [42-45]. The single particle phase has been investigated [46]. There is a finite-temperature crossover to an incoherent metal (IM) and the marginal-Fermi liquid (MFL) [42] or crossover to MFL and non-Fermi liquid (NFL) [47] in some lattice models. The SYK model realizes a gapless NFL, and it violates the ratio between the zero temperature gap and the critical temperature which predicted by BCS mean-field theory [43].
The q-body (q is even) SYK hamiltonian is $H\,={\left({i}\right)}^{\displaystyle \frac{q}{2}}{\sum }_{1\leqslant {{i}}_{1}\lt {{i}}_{2}\lt \cdots \lt {{i}}_{q}\leqslant N}\,{j}_{{{i}}_{1}{{i}}_{2}\cdots {{i}}_{q}}{\psi }_{{{i}}_{1}}{\psi }_{{{i}}_{2}}\cdots {\psi }_{{{i}}_{q}}$, where ${J}_{{i}_{1},\ldots ,{i}_{q}}$ are Gaussian random variables. In the case q > 2, this model describes a NFL without quasiparticles [2, 4]. Although the SYK model describes a NFL state, it actually has marginally relevant paring instability just like the ordinary Fermi liquid state in some previous works [48, 49]. In the case q = 2, the random mass-like Hamiltonian can be diagonalized. The case of two-body interactions is trivial since free fermion terms dominate at low energies [50].
As a candidate theory in [51], the authors propose a lattice model for strongly interacting electrons motivated by the recently developed ‘tetrahedron’ rank-3 tensor model that mimics much of the physics of the SYK model (see more details in [52-54]). This model can explain some of the strange metal phase in the cuprate high temperature superconductors. The single particle Green’s function of this lattice model in the large N limit is identical to the disorder-averaged Green’s function of the SYK model. The lattice model leads to a fermion pairing instability just like the BCS instability. The system could form SP(M) spin singlet fermion pairings. Within the framework of their model, we further study the superconducting gap ratio in the absence of quasiparticles. Our scenario is analogous to Cooper’s argument. We explore a pairing mechanism in this (2 + 1)-dimensional lattice model for strongly interacting electrons.
The paper is organized as follows, in section 2, we construct symplectic group singlet pairs between fermions in the transverse momentum space and the corresponding microscopic model. Then, we derive equations for the correlation functions. In section 3, we investigate the gap function, the transition temperature and the ratio. We also evaluate the influence of the attractive term and spin term, and compare our results with the BCS theory. The section 4 is the summary and discussion.

2. SP(M) singlet pairs and the microscopic model

In this section, we construct singlet pairs between only two sites and briefly review the microscopic lattice model. We first introduce a 2M-component fermion basis on sites 1 and 2,
$\begin{eqnarray}{\rm{\Psi }}={\left({c}_{1,\alpha },{c}_{2,\alpha }^{\dagger }\right)}^{{\rm{T}}}.\end{eqnarray}$
The 2M × 2M Green’s function matrix is given by
$\begin{eqnarray*}\begin{array}{l}-\langle {T}_{\tau }{\rm{\Psi }}(\tau ){{\rm{\Psi }}}^{\dagger }(0)\rangle \\ =\,\left(\begin{array}{cc}-\langle {T}_{\tau }{c}_{1,\alpha }(\tau ){c}_{1,\beta }^{\dagger }(0)\rangle & -\langle {T}_{\tau }{c}_{1,\alpha }(\tau ){c}_{2,\beta }^{\dagger }(0)\rangle \\ -\langle {T}_{\tau }{c}_{2,\alpha }(\tau ){c}_{1,\beta }^{\dagger }(0)\rangle & -\langle {T}_{\tau }{c}_{2,\alpha }(\tau ){c}_{2,\beta }^{\dagger }(0)\rangle \end{array}\right).\end{array}\end{eqnarray*}$
Then we consider a general dimer of site (i, j). Here Δi,j = Jαβci,αcj,β is an SP(M) spin singlet fermion pairings on nearest neighbor links ⟨i, j⟩. Motivated by the observation that the symplectic group SP(M) allows fermions to form singlet pairs [55, 56], we define
$\begin{eqnarray}{{ \mathcal G }}_{{\boldsymbol{i}},{\boldsymbol{i}}}(\tau )=-\langle {T}_{\tau }{\delta }_{\alpha \beta }{c}_{{\boldsymbol{i}},\alpha }(\tau ){c}_{{\boldsymbol{i}},\beta }^{\dagger }(0)\rangle ,\end{eqnarray}$
$\begin{eqnarray}{{ \mathcal F }}_{{\boldsymbol{i}},{\boldsymbol{j}}}(\tau )=\langle {T}_{\tau }{J}_{\alpha \beta }{c}_{{\boldsymbol{i}},\alpha }(\tau ){c}_{{\boldsymbol{j}},\beta }(0)\rangle ,\end{eqnarray}$
$\begin{eqnarray}{{ \mathcal F }}_{{\boldsymbol{i}},{\boldsymbol{j}}}^{\dagger }(\tau )=\langle {T}_{\tau }{J}_{\alpha \beta }{c}_{{\boldsymbol{i}},\alpha }^{\dagger }(\tau ){c}_{{\boldsymbol{j}},\beta }^{\dagger }(0)\rangle .\end{eqnarray}$
It is similar to the cooper pair in the neighbor site ⟨Tτcp,↑(τ)cp,↓(0)⟩. The creation operator in Fourier space is ${c}_{{\boldsymbol{j}},\alpha }^{\dagger }={\sum }_{{\boldsymbol{p}}}{{\rm{e}}}^{{\rm{i}}{\boldsymbol{j}}\cdot {\boldsymbol{p}}}{c}_{\alpha ,{\boldsymbol{p}}}^{\dagger }$. Here site indices i = (ix, iy) and the conjugate momentum p = (px, py) are two-dimensional vectors. Thus, the Fourier transformations of the pair are
$\begin{eqnarray}{c}_{{\boldsymbol{j}},\alpha }(\tau ){c}_{{\boldsymbol{j}},\beta }^{\dagger }(0)=\displaystyle \sum _{{\boldsymbol{p}},{\boldsymbol{p}}^{\prime} }{{\rm{e}}}^{-{\rm{i}}{\boldsymbol{j}}\cdot ({\boldsymbol{p}}-{\boldsymbol{p}}^{\prime} )}{c}_{{\boldsymbol{p}},\alpha }(\tau ){c}_{{\boldsymbol{p}}^{\prime} ,\beta }^{\dagger }(0),\end{eqnarray}$
$\begin{eqnarray}{c}_{{\boldsymbol{i}},\alpha }(\tau ){c}_{{\boldsymbol{j}},\beta }(0)=\displaystyle \sum _{{\boldsymbol{p}},{\boldsymbol{p}}^{\prime} }{{\rm{e}}}^{-{\rm{i}}({\boldsymbol{i}}\cdot {\boldsymbol{p}}+{\boldsymbol{j}}\cdot {\boldsymbol{p}}^{\prime} )}{c}_{{\boldsymbol{p}},\alpha }(\tau ){c}_{{\boldsymbol{p}}^{\prime} ,\beta }(0),\end{eqnarray}$
$\begin{eqnarray}{c}_{{\boldsymbol{i}},\alpha }^{\dagger }(\tau ){c}_{{\boldsymbol{j}},\beta }^{\dagger }(0)=\displaystyle \sum _{{\boldsymbol{p}},{\boldsymbol{p}}^{\prime} }{{\rm{e}}}^{{\rm{i}}({\boldsymbol{i}}\cdot {\boldsymbol{p}}+{\boldsymbol{j}}\cdot {\boldsymbol{p}}^{\prime} )}{c}_{{\boldsymbol{p}},\alpha }^{\dagger }(\tau ){c}_{{\boldsymbol{p}}^{\prime} ,\beta }^{\dagger }(0).\end{eqnarray}$
By introducing the momentum and the hopping term, we modify the interacting electron Hamiltonian in [51] as follows,
$\begin{eqnarray}\begin{array}{rcl}H & = & \displaystyle \sum _{{\boldsymbol{q}}{\boldsymbol{p}}{\boldsymbol{p}}^{\prime} }\tilde{U}({\boldsymbol{p}}){c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}+{\boldsymbol{p}}^{\prime} }{c}_{\gamma ,{\boldsymbol{p}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{p}}-{\boldsymbol{p}}^{\prime} }+\displaystyle \sum _{{\boldsymbol{p}}}{\xi }_{p}{c}_{{\boldsymbol{p}},\sigma }^{\dagger }{c}_{{\boldsymbol{p}},\sigma }\\ & & -\displaystyle \frac{1}{4}J\displaystyle \sum _{{\boldsymbol{p}},{\boldsymbol{q}}}{c}_{{\boldsymbol{p}},\sigma }^{\dagger }{c}_{{\boldsymbol{p}},\sigma }{c}_{{\boldsymbol{q}},\gamma }^{\dagger }{c}_{{\boldsymbol{q}},\gamma }\\ & & +\displaystyle \frac{1}{2}J\displaystyle \sum _{{\boldsymbol{p}},{\boldsymbol{q}}}{c}_{{\boldsymbol{p}},\alpha }^{\dagger }{\sigma }_{\alpha \beta }{c}_{{\boldsymbol{p}}{\boldsymbol{p}},\beta }{c}_{{\boldsymbol{q}},\beta }^{\dagger }{\sigma }_{\beta \alpha }{c}_{{\boldsymbol{q}},\alpha }\\ & & +K\displaystyle \sum _{{\boldsymbol{q}}{\boldsymbol{p}}{\boldsymbol{p}}^{\prime} }({\epsilon }_{\alpha \beta }{\epsilon }_{\gamma \sigma }{c}_{\alpha ,{\boldsymbol{p}}+{\boldsymbol{q}}}^{\dagger }{c}_{\beta ,{\boldsymbol{p}}^{\prime} -{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{p}}^{\prime} }{c}_{\sigma ,{\boldsymbol{p}}}+{\rm{h}}.{\rm{c}}.).\end{array}\end{eqnarray}$
We have set the volume &ugr; = 1 for simplification. ${\hat{n}}_{{\boldsymbol{i}}}={\hat{n}}_{{\boldsymbol{i}},\uparrow }\,+{\hat{n}}_{{\boldsymbol{i}},\downarrow }$ is the total electron number on site i. ${\vec{S}}_{{\boldsymbol{i}}}=\tfrac{1}{2}{c}_{{\boldsymbol{i}}}^{\dagger }\vec{\sigma }{c}_{{\boldsymbol{i}}}\,=\tfrac{1}{2}{c}_{{\boldsymbol{i}},\alpha }^{\dagger }{\sigma }_{\alpha \beta }{c}_{{\boldsymbol{i}},\beta }$ is the spin operator, and ${\vec{S}}_{{\boldsymbol{i}}}\cdot {\vec{S}}_{{\boldsymbol{j}}}=\tfrac{1}{2}{\vec{S}}_{\alpha \beta ,{\boldsymbol{i}}}{\vec{S}}_{\beta \alpha ,{\boldsymbol{j}}}$. ξq is the energy of the single particle which hoppings between the two sublattices as perturbations. K satisfies
$\begin{eqnarray*}K\left\{\begin{array}{ll}\lt 0, & | {\xi }_{q}| \lt {\omega }_{D},\\ =0, & | {\xi }_{q}| \gt {\omega }_{D}.\end{array}\right.\end{eqnarray*}$
Here ωD is the Debye energy. The term with the coupling K takes a spin singlet pair of electrons on two diagonal sites ${\boldsymbol{j}},{\boldsymbol{j}}+\hat{x}+\hat{y}$ of a plaquette to the two opposite diagonal sites ${\boldsymbol{j}}+\hat{x},{\boldsymbol{j}}+\hat{y}$ of the same plaquette. The perturbation with coefficient K forms SP(M) spin singlet fermion pairings. Only when $\tilde{U}=K=\pm J/2$, the interacting electron model in [51] is equivalent to a tetrahedron model with three indices: the SP(M) spin, the x coordinate, and y coordinate.
$\begin{eqnarray*}\begin{array}{l}\displaystyle \frac{g}{{N}_{a}{N}_{b}{N}_{c}}{J}_{c1c1^{\prime} }{J}_{c2c2^{\prime} }{c}_{a1b1c1}^{\dagger }{c}_{a2b2c1^{\prime} }^{\dagger }{c}_{a1b2c2}{c}_{a2b1c2^{\prime} }\\ \sim \,\displaystyle \frac{g{\eta }_{r,r^{\prime} }}{N\sqrt{M}}{J}_{\alpha \beta }{J}_{\gamma \sigma }{c}_{{jx},{jy},\alpha }^{\dagger }{c}_{{jx}+r,{jy}+r^{\prime} ,\beta }^{\dagger }{c}_{{jx},{jy}+r^{\prime} ,\gamma }{c}_{{jx}+r,{jy},\sigma },\end{array}\end{eqnarray*}$
where g is the same order as the coupling J. The total symmetry of this model is U(Na) × U(Nb) × SP(Nc).

3. The gap function and the transition temperature

As we are going to evaluate the gap ratio, let us first consider the time development
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{\rm{d}}}{{\rm{d}}\tau }{c}_{\alpha ,{\boldsymbol{p}}}(\tau )=\left[H,{c}_{\alpha ,{\boldsymbol{p}}}\right]\\ =\,-2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}+{\boldsymbol{p}}^{\prime} }{c}_{\alpha ,{\boldsymbol{p}}-{\boldsymbol{p}}^{\prime} }+\displaystyle \frac{J}{2}{c}_{\alpha ,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}\\ \,-\,{\xi }_{p}{c}_{\alpha ,{\boldsymbol{p}}}-J{\sigma }_{\alpha \beta }{c}_{\beta ,{\boldsymbol{p}}}\tilde{\vec{S}}+4K\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }{\epsilon }_{\alpha \beta }{\epsilon }_{\gamma \sigma }{c}_{\beta ,{\boldsymbol{p}}^{\prime} {\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{p}}^{\prime} }{c}_{\sigma ,{\boldsymbol{p}}-{\boldsymbol{q}}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{\rm{d}}}{{\rm{d}}\tau }{c}_{\alpha ,{\boldsymbol{p}}}^{\dagger }(\tau )=\left[H,{c}_{\alpha ,{\boldsymbol{p}}}^{\dagger }\right]\\ =\,2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}+{\boldsymbol{p}}^{\prime} }{c}_{\alpha ,{\boldsymbol{p}}-{\boldsymbol{p}}^{\prime} }-\displaystyle \frac{J}{2}{c}_{\alpha ,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}\\ \ \,+\,{\xi }_{p}{c}_{\alpha ,{\boldsymbol{p}}}^{\dagger }+J{\sigma }_{\beta \alpha }{c}_{\beta ,{\boldsymbol{p}}}^{\dagger }\tilde{\vec{S}}+4K\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }{\epsilon }_{\gamma \beta }{\epsilon }_{\alpha \sigma }{c}_{\gamma ,{\boldsymbol{p}}^{\prime} +{\boldsymbol{q}}}{c}_{\beta ,{\boldsymbol{p}}^{\prime} -{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{p}}^{\prime} },\end{array}\end{eqnarray}$
where $\tilde{\vec{S}}=\tfrac{1}{2}{\sum }_{{\boldsymbol{q}}}{c}_{{\boldsymbol{q}},\alpha }^{\dagger }{\sigma }_{\alpha \beta }{c}_{{\boldsymbol{q}},\beta }$ and ${\boldsymbol{q}}=(0,p{{\prime} }_{y}-{p}_{y})$. The equations for the correlation functions
$\begin{eqnarray*}\begin{array}{rcl}{ \mathcal G }({\boldsymbol{p}},\tau ) & = & -\langle {T}_{\tau }{\delta }_{\alpha \beta }{c}_{{\boldsymbol{p}},\alpha }(\tau ){c}_{{\boldsymbol{p}},\beta }^{\dagger }(0)\rangle ,\\ {{ \mathcal F }}^{\dagger }({\boldsymbol{p}},\tau ) & = & \langle {T}_{\tau }{J}_{\alpha \beta }{c}_{{\boldsymbol{p}},\alpha }^{\dagger }(\tau ){c}_{-{\boldsymbol{p}},\beta }^{\dagger }(0)\rangle ,\end{array}\end{eqnarray*}$
are determined by
$\begin{eqnarray}\displaystyle \frac{\partial }{\partial \tau }{ \mathcal G }({\boldsymbol{p}},\tau )=-\delta (\tau )-\left\langle {T}_{\tau }{\delta }_{{ab}}\left[\displaystyle \frac{\partial }{\partial \tau }{c}_{{\boldsymbol{p}},a}(\tau )\right]{c}_{{\boldsymbol{p}},b}^{\dagger }(0)\right\rangle ,\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{\partial }{\partial \tau }{{ \mathcal F }}^{\dagger }({\boldsymbol{p}},\tau )=\left\langle {T}_{\tau }{J}_{{ab}}\left[\displaystyle \frac{\partial }{\partial \tau }{c}_{{\boldsymbol{p}},a}^{\dagger }(\tau )\right]{c}_{-{\boldsymbol{p}},b}^{\dagger }(0)\right\rangle .\end{eqnarray}$
Combined with the results (9) (10) and the gap function
$\begin{eqnarray}{\rm{\Delta }}({\boldsymbol{p}})=-4\displaystyle \sum _{{\boldsymbol{q}}}K{{ \mathcal F }}^{\dagger }({\boldsymbol{p}}-{\boldsymbol{q}},\tau =0),\end{eqnarray}$
the derivative of the equation for the correlation function after Fourier transforming is given as,
$\begin{eqnarray}\begin{array}{l}({\rm{i}}{p}_{n}-{\xi }_{p}){ \mathcal G }({\boldsymbol{p}},{\rm{i}}{p}_{n})+{\rm{\Delta }}({\boldsymbol{p}}){{ \mathcal F }}^{\dagger }({\boldsymbol{p}},{\rm{i}}{p}_{n})\\ \quad +\,J\langle {T}_{\tau }{\sigma }_{a\beta }{c}_{{\boldsymbol{p}},\beta }\tilde{\vec{S}}{c}_{{\boldsymbol{p}},a}^{\dagger }\rangle \\ \quad +\,2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}+{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}-{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}}^{\dagger }\\ \quad -\,\displaystyle \frac{J}{2}\displaystyle \sum _{{\boldsymbol{q}}}{c}_{a,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}{c}_{a,{\boldsymbol{p}}}^{\dagger }=1,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}({\rm{i}}{p}_{n}+{\xi }_{p}){{ \mathcal F }}^{\dagger }({\boldsymbol{p}},{\rm{i}}{p}_{n})+{J}_{{ab}}{\epsilon }_{{ab}}{{\rm{\Delta }}}^{\dagger }({\boldsymbol{p}}){ \mathcal G }({\boldsymbol{p}},{\rm{i}}{p}_{n})\\ \quad +\,J\langle {T}_{\tau }{J}_{{ab}}{\sigma }_{\beta a}{c}_{{\boldsymbol{p}},\beta }^{\dagger }\tilde{\vec{S}}{c}_{-{\boldsymbol{p}},b}^{\dagger }\rangle \\ \quad +\,2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }{J}_{{ab}}\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}-{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}+{\boldsymbol{p}}^{\prime} }{c}_{b,-{\boldsymbol{p}}}^{\dagger }\\ \quad -\,\displaystyle \frac{J}{2}\displaystyle \sum _{\vec{q}}{J}_{{ab}}{c}_{a,{\boldsymbol{p}}}{c}_{\gamma ,\vec{q}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}{c}_{b,-{\boldsymbol{p}}}^{\dagger }=0.\end{array}\end{eqnarray}$
After the combination of the two equations, we simplify the final results as follows,
$\begin{eqnarray}\begin{array}{l}{ \mathcal G }({\boldsymbol{p}},{\rm{i}}{p}_{n})=-{\left[{p}_{n}^{2}+{\xi }_{p}^{2}+{\rm{\Delta }}({\boldsymbol{p}}){J}_{{ab}}{\epsilon }_{{ab}}{{\rm{\Delta }}}^{\dagger }({\boldsymbol{p}})\right]}^{-1}\\ \left[{\rm{\Delta }}({\boldsymbol{p}})\left(J\langle {T}_{\tau }{J}_{{ab}}{\sigma }_{\beta a}{c}_{{\boldsymbol{p}},\beta }^{\dagger }\tilde{\vec{S}}{c}_{-{\boldsymbol{p}},b}^{\dagger }\rangle \right.\right.\\ \quad +\,2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }{J}_{{ab}}\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}-{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}+{\boldsymbol{p}}^{\prime} }{c}_{b,-{\boldsymbol{p}}}^{\dagger }\\ \quad \left.-\displaystyle \frac{J}{2}\displaystyle \sum _{{\boldsymbol{q}}}{J}_{{ab}}{c}_{a,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}{c}_{b,-{\boldsymbol{p}}}^{\dagger }\right)\\ \quad +({\rm{i}}{p}_{n}+{\xi }_{p})\left(1-J\langle {T}_{\tau }{\sigma }_{\alpha \beta }{c}_{{\boldsymbol{p}},\beta }\tilde{\vec{S}}{c}_{{\boldsymbol{p}},\alpha }^{\dagger }\rangle \right.\\ \quad -2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}+{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}-{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}}^{\dagger }\\ \quad \left.\left.+\displaystyle \frac{J}{2}\displaystyle \sum _{{\boldsymbol{q}}}{c}_{a,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}{c}_{a,{\boldsymbol{p}}}^{\dagger }\right)\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{{ \mathcal F }}^{\dagger }({\boldsymbol{p}},{\rm{i}}{p}_{n})={\left[{p}_{n}^{2}+{\xi }_{p}^{2}+{\rm{\Delta }}({\boldsymbol{p}}){J}_{{ab}}{\epsilon }_{{ab}}{{\rm{\Delta }}}^{\dagger }({\boldsymbol{p}})\right]}^{-1}\\ \left[({\rm{i}}{p}_{n}-{\xi }_{p})\left(J\langle {T}_{\tau }{J}_{{ab}}{\sigma }_{\beta a}{c}_{{\boldsymbol{p}},\beta }^{\dagger }\tilde{\vec{S}}{c}_{-{\boldsymbol{p}},b}^{\dagger }\rangle \right.\right.\\ \quad +\,2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }{J}_{{ab}}\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}-{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}+{\boldsymbol{p}}^{\prime} }{c}_{b,-{\boldsymbol{p}}}^{\dagger }\\ \quad \left.-\displaystyle \frac{J}{2}\displaystyle \sum _{{\boldsymbol{q}}}{J}_{{ab}}{c}_{a,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}{c}_{b,-{\boldsymbol{p}}}^{\dagger }\right)\\ \quad +{J}_{{ab}}{\epsilon }_{{ab}}{{\rm{\Delta }}}^{\dagger }({\boldsymbol{p}})\left(1-J\langle {T}_{\tau }{\sigma }_{\alpha \beta }{c}_{{\boldsymbol{p}},\beta }\tilde{\vec{S}}{c}_{{\boldsymbol{p}},\alpha }^{\dagger }\rangle \right.\\ \quad -2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}+{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}-{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}}^{\dagger }\\ \quad \left.\left.+\displaystyle \frac{J}{2}\displaystyle \sum _{{\boldsymbol{q}}}{c}_{a,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}{c}_{a,{\boldsymbol{p}}}^{\dagger }\right)\right].\end{array}\end{eqnarray}$
By inserting (17) into
$\begin{eqnarray}\begin{array}{rcl}{\rm{\Delta }}({\boldsymbol{p}}) & = & {{\rm{\Delta }}}^{\dagger }({\boldsymbol{p}})=-4\displaystyle \sum _{{\boldsymbol{q}}}K{{ \mathcal F }}^{\dagger }({\boldsymbol{p}}-{\boldsymbol{q}},\tau =0)\\ & = & -4\displaystyle \sum _{{\boldsymbol{q}},{p}_{n},{q}_{n}}K{{ \mathcal F }}^{\dagger }({\boldsymbol{p}}-{\boldsymbol{q}},{\rm{i}}{p}_{n}-{\rm{i}}{q}_{n}),\end{array}\end{eqnarray}$
we obtain the equation for the gap function, which is
$\begin{eqnarray}\begin{array}{l}{\rm{\Delta }}({\boldsymbol{p}})=-4\displaystyle \sum _{{\boldsymbol{p}},{p}_{n},{q}_{n}}K\left[{\left({p}_{n}-{q}_{n}\right)}^{2}+{\xi }_{p}^{2}\right.\\ \quad {\left.+{J}_{{ab}}{\epsilon }_{{ab}}{\left({\rm{\Delta }}({\boldsymbol{p}}-{\boldsymbol{q}})\right)}^{2}\right]}^{-1}\\ \left[({\rm{i}}{p}_{n}-{\rm{i}}{q}_{n}-{\xi }_{p-q})\left(J\langle {T}_{\tau }{J}_{{ab}}{\sigma }_{\beta a}{c}_{{\boldsymbol{p}}-{\boldsymbol{q}},\beta }^{\dagger }\tilde{\vec{S}}{c}_{-{\boldsymbol{p}}+{\boldsymbol{q}},b}^{\dagger }\rangle \right.\right.\\ \quad +2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }{J}_{{ab}}\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}-{\boldsymbol{p}}^{\prime} }{c}_{a,\vec{p}+\vec{p}^{\prime} }{c}_{b,-\vec{p}}^{\dagger }\\ \quad \left.-\displaystyle \frac{J}{2}\displaystyle \sum _{{\boldsymbol{q}}}{J}_{{ab}}{c}_{a,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}{c}_{b,-{\boldsymbol{p}}}^{\dagger }\right)\\ \quad +{J}_{{ab}}{\epsilon }_{{ab}}{\rm{\Delta }}({\boldsymbol{p}}-{\boldsymbol{q}})\left(1-J\langle {T}_{\tau }{\sigma }_{\alpha \beta }{c}_{{\boldsymbol{p}}-{\boldsymbol{q}},\beta }\tilde{\vec{S}}{c}_{{\boldsymbol{p}}-{\boldsymbol{q}},\alpha }^{\dagger }\rangle \right.\\ \quad -2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}+{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}-{\boldsymbol{p}}^{\prime} }{c}_{a{\boldsymbol{p}}}^{\dagger }\\ \quad \left.\left.\left.+\,\displaystyle \frac{J}{2}\displaystyle \sum _{{\boldsymbol{q}}}{c}_{a,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}{c}_{a,{\boldsymbol{p}}}^{\dagger }\right)\right)\right].\end{array}\end{eqnarray}$
We define the excitation energy of the superconductor as
$\begin{eqnarray}{E}_{p-q}=\sqrt{{\xi }^{2}+{J}_{{ab}}{\epsilon }_{{ab}}{\left({\rm{\Delta }}({\boldsymbol{p}}-{\boldsymbol{q}})\right)}^{2}}.\end{eqnarray}$
The summation over i(pnqn) is evaluated by the contour integral
$\begin{eqnarray}\oint \displaystyle \frac{{\rm{d}}z}{2\pi {\rm{i}}}{n}_{F}(z)\displaystyle \frac{{{\rm{\Delta }}}^{\dagger }({\boldsymbol{p}}-{\boldsymbol{q}})}{{z}^{2}-{E}_{p-q}^{2}},\oint \displaystyle \frac{{\rm{d}}z}{2\pi {\rm{i}}}{n}_{F}(z)\displaystyle \frac{z-{\xi }_{p-q}}{{z}^{2}-{E}_{p-q}^{2}},\end{eqnarray}$
and the poles of Fermi distribution ${n}_{F}(z)=\tfrac{1}{{n}^{\beta z}+1}$ give the summation over z = i(pnqn). Since $\tfrac{{\rm{\Delta }}}{2{E}_{p}}\tfrac{{{\rm{e}}}^{-\beta {E}_{p}}-{{\rm{e}}}^{\beta {E}_{p}}}{2+{{\rm{e}}}^{-\beta {E}_{p}}+{{\rm{e}}}^{\beta {E}_{p}}}\,=\tfrac{{\rm{\Delta }}}{2{E}_{p}}\tanh \left(\tfrac{\beta {E}_{p}}{2}\right)$, now the gap function is
$\begin{eqnarray}\begin{array}{l}{\rm{\Delta }}({\boldsymbol{p}})=\displaystyle \sum _{{\boldsymbol{q}}}f({\boldsymbol{q}})\\ =\,4\displaystyle \sum _{{\boldsymbol{q}}}\left[-{{KJ}}_{{ab}}{\epsilon }_{{ab}}\left(1-J\langle {T}_{\tau }{\sigma }_{\alpha \beta }{c}_{{\boldsymbol{p}}-{\boldsymbol{q}},\beta }\tilde{\vec{S}}{c}_{{\boldsymbol{p}}-{\boldsymbol{q}},\alpha }^{\dagger }\rangle \right.\right.\\ \ \ -\,2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}+{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}-{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}}^{\dagger }(0)\\ \ \ \left.\left.+\,\displaystyle \frac{J}{2}\displaystyle \sum _{{\boldsymbol{q}}}{c}_{a,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}{c}_{a,{\boldsymbol{p}}}^{\dagger }\right)\right)\tanh \left(\displaystyle \frac{\beta {E}_{p-q}}{2}\right)\displaystyle \frac{{\rm{\Delta }}({\boldsymbol{p}}-{\boldsymbol{q}})}{2{E}_{p-q}}\\ \ \ -\,K\left(J\langle {T}_{\tau }{J}_{{ab}}{\sigma }_{\beta a}{c}_{{\boldsymbol{p}}-{\boldsymbol{q}},\beta }^{\dagger }\tilde{\vec{S}}{c}_{-{\boldsymbol{p}}+{\boldsymbol{q}},b}^{\dagger }\rangle \right.\\ \ \ +\,2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }{J}_{{ab}}\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}-{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}+{\boldsymbol{p}}^{\prime} }{c}_{b,-{\boldsymbol{p}}}^{\dagger }\\ \left.\ \ -\,\displaystyle \frac{J}{2}\displaystyle \sum _{{\boldsymbol{q}}}{J}_{{ab}}{c}_{a,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma {\boldsymbol{q}}}{c}_{b,-{\boldsymbol{p}}}^{\dagger }\right)\\ \ \ \left.\times \,\left({E}_{p-q}-{\xi }_{p-q}\tanh \left(\displaystyle \frac{\beta {E}_{p-q}}{2}\right)\right)\displaystyle \frac{1}{2{E}_{p-q}}\right].\end{array}\end{eqnarray}$
It is convenient to change the summation to an integration
$\begin{eqnarray}\displaystyle \sum _{{\boldsymbol{q}}}f({\boldsymbol{q}})=\int \displaystyle \frac{{{\rm{d}}}^{3}q}{{\left(2\pi \right)}^{3}}f({\boldsymbol{q}})={N}_{F}{\int }_{-{\omega }_{D}}^{{\omega }_{D}}{\rm{d}}\xi f(\xi ),\end{eqnarray}$
where we have approximately substituted the constant Nf for density of states near the Fermi surface. Taking the zero temperature limit β = 1/T → ∞ , we obtain
$\begin{eqnarray}\begin{array}{l}{\rm{\Delta }}({\boldsymbol{p}})=-4{{KN}}_{F}\left[{J}_{{ab}}{\epsilon }_{{ab}}\left(1-J\langle {T}_{\tau }{\sigma }_{\alpha \beta }{c}_{{\boldsymbol{p}}-{\boldsymbol{q}},\beta }\tilde{\vec{S}}{c}_{{\boldsymbol{p}}-{\boldsymbol{q}},\alpha }^{\dagger }\rangle \right.\right.\\ -\,2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}+{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}-{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}}^{\dagger }\\ \left.+\,\displaystyle \frac{J}{2}\displaystyle \sum _{{\boldsymbol{q}}}{c}_{a,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}{c}_{a,{\boldsymbol{p}}}^{\dagger }\right)\displaystyle \frac{{\rm{\Delta }}}{2}\mathrm{ln}(\xi +\sqrt{{J}_{{ab}}{\epsilon }_{{ab}}{{\rm{\Delta }}}^{2}+{\xi }^{2}}){| }_{-{\omega }_{D}}^{{\omega }_{D}}\\ +\,\left(J\langle {T}_{\tau }{J}_{{ab}}{\sigma }_{\beta a}{c}_{{\boldsymbol{p}}-{\boldsymbol{q}},\beta }^{\dagger }\tilde{\vec{S}}{c}_{-{\boldsymbol{p}}+{\boldsymbol{q}},b}^{\dagger }\rangle \right.\\ +\,2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }{J}_{{ab}}\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}-{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}+{\boldsymbol{p}}^{\prime} }{c}_{b,-{\boldsymbol{p}}}^{\dagger }\\ \left.\left.-\,\displaystyle \frac{J}{2}\displaystyle \sum _{{\boldsymbol{q}}}{J}_{{ab}}{c}_{a,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}{c}_{b,-{\boldsymbol{p}}}^{\dagger }\right){\omega }_{D}\right].\end{array}\end{eqnarray}$
Since Δ is constant and $\mathrm{ln}(\xi +\sqrt{{J}_{{ab}}{\epsilon }_{{ab}}{{\rm{\Delta }}}^{2}+{\xi }^{2}}){| }_{-{\omega }_{D}}^{{\omega }_{D}}\,\approx 2\mathrm{ln}\left(\tfrac{2{\omega }_{D}}{\sqrt{{J}_{{ab}}{\epsilon }_{{ab}}}{\rm{\Delta }}}\right)$, (24) leaves the equation for the energy gap
$\begin{eqnarray}{\rm{\Delta }}=-4{{KN}}_{F}\left(A{\rm{\Delta }}\mathrm{ln}\left(\displaystyle \frac{2{\omega }_{D}}{\sqrt{{J}_{{ab}}{\epsilon }_{{ab}}}{\rm{\Delta }}}\right)+{\omega }_{D}B\right),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}A & = & {J}_{{ab}}{\epsilon }_{{ab}}\left(1-J\langle {T}_{\tau }{\sigma }_{\alpha \beta }{c}_{{\boldsymbol{p}}-{\boldsymbol{q}},\beta }\tilde{\vec{S}}{c}_{{\boldsymbol{p}}-{\boldsymbol{q}},\alpha }^{\dagger }\rangle \rangle \right.\\ & & -2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}+{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}-{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}}^{\dagger }\\ & & \left.+\displaystyle \frac{J}{2}\displaystyle \sum _{{\boldsymbol{q}}}{c}_{a,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}{c}_{a,{\boldsymbol{p}}}^{\dagger }\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}B & = & J\langle {T}_{\tau }{J}_{{ab}}{\sigma }_{\beta a}{c}_{{\boldsymbol{p}}-{\boldsymbol{q}},\beta }^{\dagger }\tilde{\vec{S}}{c}_{-{\boldsymbol{p}}+{\boldsymbol{q}},b}^{\dagger }\rangle \\ & & +2\displaystyle \sum _{{\boldsymbol{q}},{\boldsymbol{p}}^{\prime} }{J}_{{ab}}\tilde{U}{c}_{\sigma ,{\boldsymbol{q}}}^{\dagger }{c}_{\sigma ,{\boldsymbol{q}}-{\boldsymbol{p}}^{\prime} }{c}_{a,{\boldsymbol{p}}+{\boldsymbol{p}}^{\prime} }{c}_{b,-{\boldsymbol{p}}}^{\dagger }\\ & & -\displaystyle \frac{J}{2}\displaystyle \sum _{{\boldsymbol{q}}}{J}_{{ab}}{c}_{a,{\boldsymbol{p}}}{c}_{\gamma ,{\boldsymbol{q}}}^{\dagger }{c}_{\gamma ,{\boldsymbol{q}}}{c}_{b,-{\boldsymbol{p}}}^{\dagger }.\end{array}\end{eqnarray}$
We set ωD = 1 to fit the gap, and choose a small correction for spin S = ⟨TτσcSc⟩. In BCS theory (i.e. A = 1, B = 0), the energy gap for $K=-\tfrac{1}{4}{V}_{0}$ is ${\rm{\Delta }}=2{\omega }_{D}{{\rm{e}}}^{-1/{V}_{0}{N}_{F}}$ at zero temperature (V0 > 0). −V0 is the attractive and constant potential in BCS theory. Equation (25) could be numerically calculated and the result is shown in figure 1. Here we have neglected the effect of B term due to the following analysis on Tc. We could conclude that the energy gap in the ‘tetrahedron’ model is higher than the BCS energy gap represented by red line when U = K = −J/2.
Figure 1. The relation between the gap Δ and the coupling −5 < K < 1/2 with different S = ⟨TτσcSc⟩ = 0, 0.01, 0.05 represented by red, purple, dashed respectively. The figure on the left corresponds to the case of U = K = J/2. The figure on the right corresponds to the case of U = K = −J/2. The gap changes abruptly when K goes from negative to zero.
Furthermore, we know Δ(T = Tc) = 0 at the transition temperature Tc. Then, (24) becomes
$\begin{eqnarray}\begin{array}{rcl}1 & = & -4{{KN}}_{F}{\displaystyle \int }_{-{\omega }_{D}}^{{\omega }_{D}}{\rm{d}}\xi \left[\displaystyle \frac{A}{2\xi }\tanh \left(\displaystyle \frac{\xi }{2T}\right)\right.\\ & & \left.+\displaystyle \frac{B}{2{\rm{\Delta }}}\left(1-\tanh \left(\displaystyle \frac{\xi }{2T}\right)\right)\right].\end{array}\end{eqnarray}$
Using the Euler integral formula, we obtain the transition temperature as follow
$\begin{eqnarray}{T}_{c}=1.13{\omega }_{D}{{\rm{e}}}^{1/(4{{KN}}_{F}A)}.\end{eqnarray}$
Since we have required that (28) must be regular, it yields
$\begin{eqnarray}A={J}_{{ab}}{\epsilon }_{{ab}}\left(1-J\langle {T}_{\tau }{\sigma }_{\alpha \beta }{c}_{{\boldsymbol{p}}-{\boldsymbol{q}},\beta }\tilde{\vec{S}}{c}_{{\boldsymbol{p}}-{\boldsymbol{q}},\alpha }^{\dagger }\rangle \right),B=0.\end{eqnarray}$
We notice that the critical temperature is ${T}_{c}=1.13{\omega }_{D}{{\rm{e}}}^{-1/{V}_{0}{N}_{F}}$ in the BCS theory. While our solution of Tc is modified by K and S. We plot the the transition temperature Tc as a function of the coupling K of the SYK-like term in figure 2. The transition temperature decrease as K increase. K is the SYK-like coupling. As to the energy gap, the transition temperature diverges as K goes from negative to zero.
Figure 2. The figure shows the relation between the transition temperature Tc and −5 < K < 1/2 in the case of U = K = ±J/2. The transition temperature changes abruptly when K goes from negative to positive.
Now we have both the energy gap and the transition temperature. The ratio of these two results is $\tfrac{2{\rm{\Delta }}}{{T}_{c}}=3.5$ in the BCS theory. When $\tfrac{2{\rm{\Delta }}}{{T}_{c}}\gt 3.5$, it is the case of strong coupling. As we know, the energy gap and the critical temperature are dependent on the coupling V0, while $\tfrac{2{\rm{\Delta }}}{{T}_{c}}$ is independent on V0 in the BCS theory. Since the ratio $\tfrac{2{\rm{\Delta }}}{{T}_{c}}$ is dependent on the coupling K in the ‘tetrahedron’ model, it is interesting to show the numerical evaluation of $\tfrac{2{\rm{\Delta }}}{{T}_{c}}$ in figure 3.
Figure 3. The dependence of $\tfrac{2{\rm{\Delta }}}{{T}_{c}}$ on K and S. The figure on the left shows that the ratio decrease as K decrease and S increase in the case of U = K = J/2. The figure on the right shows that the ratio increase as K decrease and S increase in the case of U = K = −J/2.
According to the numerical evaluation, we conclude that the gap ratio could be higher than the one in BCS theory in the case of U = K = −J/2. When S = 0.05, K = −J/2 = −5, which is higher than the gap ratio in BCS theory, we have $\tfrac{2{\rm{\Delta }}}{{T}_{c}}\approx 5$. Then, the gap ratio decreases as K increases but S decreases in the case of U = K = −J/2. However, in the case of U = K = J/2, the gap ratio could not exceed the one in BCS theory. If S vanishes, the ratio $\tfrac{2{\rm{\Delta }}}{{T}_{c}}=3.5$ in the ‘tetrahedron’ model (K < 0) is exactly the same as the ratio in the BCS theory (K = 1). In other words, the ratio is independent of the coupling K in such case.

4. Conclusion and discussion

In this paper, we attempt to understand the pairing mechanism of high-temperature superconductivity, which extends the BCS theory to strong coupling. For this purpose, SP(M) singlet pairing operator is proposed in an SYK-like model. Then equations for the correlation functions are derived. Our analysis shows how the superconducting gap, the transition temperature and the their ratio change with the coupling K and spin ⟨TτσcSc⟩. When U = K = −J/2, the ratio $\tfrac{2{\rm{\Delta }}}{{T}_{c}}\gt 3.5$. This result indicates that the SYK-like model relates to the case of strong coupling. The behavior of this model at strong coupling limit beyonds the scope of this paper. We also leave the ratio of susceptibility and specific heat to a future study. Specially, the energy gap, the transition temperature and the ratio $\tfrac{2{\rm{\Delta }}}{{T}_{c}}$ could return to the BCS theory if < ⟨TτσcSc⟩ = 0.
The interaction term of our model is not random, but it demonstrates features of strange metal. There is other system with non-random interaction. It becomes NFL metal with a superconducting instability [57]. Actually, the single particle Green’s function with large component tensor is identical to the disordered averaged Green’s function of the SYK models [51, 58]. The full Green’s function and the current vertex of the translational invariant model with random interaction terms could be solvable in the large N limit [47]. Thus, in the SYK model at large N limit, the quantum contribution to (26) (27) of the rank-3 tensor model can be summed analytically.
Our calculation may be not applied in the large N limit, due to the long range interaction between lattices. Although we could not generalize our calculations to large N limit, enhancement of the gap ratio is still seen in the model at large N limit [43]. Two lattice models are proposed with on-site SYK interactions exhibiting a transition from an IM to an s-wave superconductor in [43]. In some holographic superconductors, the gap ratio increases as well [59]. On the other hand, in [51] it is also argued that the correction to the NFL solution in this model is suppressed rapidly with increasing N. Therefore, our results without so large N show a qualitative agreement.

We would like to thank Shao-Kai Jian and Shi-Ping Zhou for valuable discussions. The study was partially supported by NSFC China (Grant No. 11805117 and Grant No. 11875184).

1
Sachdev S Ye J 1993 Gapless spin fluid ground state in a random, quantum Heisenberg magnet Phys. Rev. Lett. 70 3339

DOI

2
Kitaev A A simple model of quantum holography (http://online.kitp.ucsb.edu/online/entangled15/kitaev/) and (http://online.kitp.ucsb.edu/online/entangled15/kitaev2/) Talks at KITP, April 7, 2015 and May 27, 2015

3
Maldacena J Stanford D Yang Z 2016 Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space PTEP 2016 12C104

DOI

4
Maldacena J Stanford D 2016 Remarks on the Sachdev-Ye-Kitaev model Phys. Rev. D 94 106002

DOI

5
Polchinski J Rosenhaus V 2016 The spectrum in the Sachdev-Ye-Kitaev model JHEP 1604 001

DOI

6
Jensen K 2016 Chaos in AdS2 Holography Phys. Rev. Lett. 117 111601

DOI

7
Zhang P Zhai H 2018 Topological Sachdev-Ye-Kitaev model Phys. Rev. B 97 201112

DOI

8
Krishnan C Sanyal S Bala Subramanian P N 2017 Quantum chaos and holographic tensor models JHEP 1703 056

DOI

9
Dai X Jian S-K Yao H 2019 Global phase diagram of the one-dimensional Sachdev-Ye-Kitaev model at finite N Phys. Rev. B 100 235144

DOI

10
Bonzom V Lionni L Tanasa A 2017 Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders J. Math. Phys. 58 052301

DOI

11
Krishnan C Kumar K V P Sanyal S 2017 Random matrices and holographic tensor models JHEP 1706 036

DOI

12
Peng C 2018 ${ \mathcal N }=(0,2)$ SYK, chaos and higher-spins JHEP 12 065

DOI

13
Krishnan C Pavan Kumar K V Complete solution of a gauged tensor model arXiv:1804.10103

14
Gross D J Rosenhaus V 2017 A generalization of Sachdev-Ye-Kitaev JHEP 1702 093

DOI

15
Chaturvedi P Gu Y Song W Yu B 2018 A note on the complex SYK model and warped CFTs JHEP 12 101

DOI

16
Jian S K Yao H 2017 Solvable Sachdev-Ye-Kitaev models in higher dimensions: from diffusion to many-body localization Phys. Rev. Lett. 119 206602

DOI

17
Davison R A Fu W Georges A Gu Y Jensen K Sachdev S 2017 Thermoelectric transport in disordered metals without quasiparticles: the Sachdev-Ye-Kitaev models and holography Phys. Rev. B 95 155131

DOI

18
Cai W Ge X H Yang G H 2018 Diffusion in higher dimensional SYK model with complex fermions JHEP 1801 076

DOI

19
Ge X H Jian S K Wang Y L Xian Z Y Yao H 2020 Violation of the viscosity/entropy bound in translationally invariant non-Fermi liquids Phys. Rev. Res. 2 023366

DOI

20
Jia Y Verbaarschot J J M 2018 Large N expansion of the moments and free energy of Sachdev-Ye-Kitaev model, and the enumeration of intersection graphs JHEP 11 031

DOI

21
Garcıa-Garcıa A M Jia Y Verbaarschot J J M 2018 Exact moments of the Sachdev-Ye-Kitaev model up to order 1/N2 JHEP 1804 146

DOI

22
Garcıa-Garcıa A M Verbaarschot J J M 2016 Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model Phys. Rev. D 94 126010

DOI

23
Garcıa-Garcıa A M Verbaarschot J J M 2017 Analytical spectral density of the Sachdev-Ye-Kitaev Model at finite N Phys. Rev. D 96 066012

DOI

24
Das S R Ghosh A Jevicki A Suzuki K 2018 Three dimensional view of arbitrary q SYK models JHEP 1802 162

DOI

25
García-García A M Tezuka M 2019 Many-body localization in a finite-range Sachdev-Ye-Kitaev model and holography Phys. Rev. B 99 054202

DOI

26
Fu W Gaiotto D Maldacena J Sachdev S 2017 Supersymmetric Sachdev-Ye-Kitaev models Phys. Rev. D 95 026009

DOI

Fu W Gaiotto D Maldacena J Sachdev S 2017 Supersymmetric Sachdev-Ye-Kitaev models Phys. Rev. D 95 069904 addendum:

DOI

27
Peng C Spradlin M Volovich A 2017 A supersymmetric SYK-like tensor model JHEP 1705 062

DOI

28
Li T Liu J Xin Y Zhou Y 2017 Supersymmetric SYK model and random matrix theory JHEP 1706 111

DOI

29
Hunter-Jones N Liu J Zhou Y 2018 On thermalization in the SYK and supersymmetric SYK models JHEP 02 142

DOI

30
Narayan P Yoon J 2018 Supersymmetric SYK model with global symmetry JHEP 1808 159

DOI

31
Sun W Ge X H 2019 Complexity growth rate, grand potential and partition function arXiv:1912.00153 [hep-th]

32
Maldacena J Shenker S H Stanford D 2016 A bound on chaos JHEP 08 106

DOI

33
Khveshchenko D V 2018 Thickening and sickening the SYK model SciPost Phys. 5 012

DOI

34
Murugan J Stanford D Witten E 2017 More on supersymmetric and 2d analogs of the SYK model JHEP 1708 146

DOI

35
Narayan P Yoon J 2017 SYK-like Tensor Models on the Lattice JHEP 1708 083

DOI

36
Berkooz M Narayan P Rozali M Simón J 2017 Higher Dimensional Generalizations of the SYK Model JHEP 1701 138

DOI

37
Qi Y H Seo Y Sin S J Song G 2019 Correlation functions in Schwarzian liquid Phys. Rev. D 99 066001

DOI

38
Das S R Ghosh A Jevicki A Suzuki K 2018 Space-time in the SYK model JHEP 2018 184

DOI

39
Li Y Z Li S L Lu H 2018 Exact embeddings of JT gravity in strings and M-theory Eur. Phys. J. C 78 791

DOI

40
Jian S K Xian Z Y Yao H 2018 Quantum criticality and duality in the Sachdev-Ye-Kitaev/AdS2 chain Phys. Rev. B 97 205141

DOI

41
Cai R G Ruan S M Yang R Q Zhang Y L The string worldsheet as the holographic dual of SYK state arXiv:1709.06297 [hep-th]

42
Patel A A McGreevy J Arovas D P Sachdev S 2018 Magnetotransport in a model of a disordered strange metal Phys. Rev. X 8 021049

DOI

43
Patel A A Lawler M J Kim E A 2018 Coherent superconductivity with large gap ratio from incoherent metals Phys. Rev. Lett. 121 187001

DOI

44
Garcıa-Garcıa A M Jia Y Verbaarschot J J M 2018 Universality and thouless energy in the supersymmetric Sachdev-Ye-Kitaev model Phys. Rev. D 97 106003

DOI

45
Chew A Essin A Alicea J 2017 Approximating the Sachdev-Ye-Kitaev model with Majorana wires Phys. Rev. B 96 121119

DOI

46
Patel A A Sachdev S 2018 Critical strange metal from fluctuating gauge fields in a solvable random model Phys. Rev. B 98 125134

DOI

47
Chowdhury D Werman Y Berg E Senthil T 2018 Translationally invariant non-Fermi liquid metals with critical Fermi-surfaces: solvable models Phys. Rev. X 8 031024

DOI

48
Bi Z Jian C M You Y Z Pawlak K A Xu C 2017 Instability of the non-Fermi liquid state of the Sachdev-Ye-Kitaev model Phys. Rev. B 95 205105

DOI

49
Luo Z You Y Z Li J Jian C M Lu D Xu C Zeng B Laflamme R Quantum simulation of the Non-Fermi-Liquid state of Sachdev-Ye-Kitaev model

DOI

50
Eberlein A Kasper V Sachdev S Steinberg J 2017 Quantum quench of the Sachdev-Ye-Kitaev model Phys. Rev. B 96 205123

DOI

51
Wu X Chen X Jian C-M You Y-Z Xu C 2018 A candidate theory for the ‘strange metal’ phase at finite energy window Phys. Rev. B 98 165117

DOI

52
Witten E 2019 An SYK-Like model without disorder J. Phys. A: Math. Theor. 52 474002

DOI

53
Klebanov I R Tarnopolsky G 2017 Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models Phys. Rev. D 95 046004

DOI

54
Gurau R 2011 Colored group field theory Commun. Math. Phys. 304 69

DOI

55
Flint R Dzero M Coleman P 2008 Heavy electrons and the symplectic symmetry of spin Nat. Phys. 4 643 648

DOI

56
Read N Sachdev S 1991 Large-N expansion for frustrated quantum antiferromagnets Phys. Rev. Lett. 66 1773

DOI

Sachdev S Wang Z 1991 Pairing in two dimensions: a systematic approach Phys. Rev. B 43 10229

DOI

57
Phillips P W Yeo L Huang E W 2020 Exact theory for superconductivity in a doped Mott insulator Nat. Phys. 16 1175 1180

DOI

58
Sachdev S 2015 Bekenstein-Hawking entropy and strange metals Phys. Rev. X 5 041025

DOI

59
Hartnoll S A Herzog C P Horowitz G T 2008 Building a holographic superconductor Phys. Rev. Lett. 101 031601

DOI

Outlines

/