Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

New structures for closed-form wave solutions for the dynamical equations model related to the ion sound and Langmuir waves

  • Md Nur Alam 1 ,
  • M S Osman , 2, 3,
Expand
  • 1Department of Mathematics, Pabna University of Science and Technology, Pabna, 6600, Bangladesh
  • 2Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
  • 3Department of Mathematics, Faculty of Applied Science, Umm Alqura University, Makkah 21955, Saudi Arabia

Author to whom any correspondence should be addressed.

Received date: 2020-09-11

  Revised date: 2020-12-07

  Accepted date: 2020-12-07

  Online published: 2021-03-16

Copyright

© 2021 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

This treatise analyzes the coupled nonlinear system of the model for the ion sound and Langmuir waves. The modified $(G^{\prime} /G)$ -expansion procedure is utilized to raise new closed-form wave solutions. Those solutions are investigated through hyperbolic, trigonometric and rational function. The graphical design makes the dynamics of the equations noticeable. It provides the mathematical foundation in diverse sectors of underwater acoustics, electromagnetic wave propagation, design of specific optoelectronic devices and physics quantum mechanics. Herein, we concluded that the studied approach is advanced, meaningful and significant in implementing many solutions of several nonlinear partial differential equations occurring in applied sciences.

Cite this article

Md Nur Alam , M S Osman . New structures for closed-form wave solutions for the dynamical equations model related to the ion sound and Langmuir waves[J]. Communications in Theoretical Physics, 2021 , 73(3) : 035001 . DOI: 10.1088/1572-9494/abd849

1. Introduction

The nonlinear model of the wave equations has evolved to form the physical characteristics of science and engineering [1, 2]. The nonlinear partial differential equations (NPDEs) have importance in many categories of physical sciences, such as ocean engineering, solid state, geophysics, optics, chemistry, plasma physics, biology, mechanics, material sciences, mathematical physics and mathematics [310]. The closed-form wave solutions of the NPDEs are a crucial task necessary for understanding the processes and physical phenomena in the diverse applied sciences sectors. Numerous new approaches have been exploited to study this kind of solution for the NPDEs. Some crucial processes include the extended direct algebraic method [11], the sech-tanh technique [12], the sine-Gordon expansion scheme [13, 14], the finite series Jacobi elliptic cosine function ansatz [15], the extended tanh expansion method [16], the generalized exponential rational function method [17, 18], the improved tan (φ(ξ)/2)-expansion scheme [19, 20], the novel $(G^{\prime} /G)$ -expansion approach [21, 22], the extended trial equation method (ETEM) [23], the improved tan (φ(ξ)/2)-expansion method (ITEM) [24], optimal homotopy and the differential transform method [25], the homogeneous balance method [26], the modified Kudryashov method [27], Riccati–Bernoulli sub-ODE method [28], the exp (− φ(ξ))-expansion method [29, 30], and the unified method and its generalized form [3137].
This research deals with the model for Langmuir waves (LWs) and ion sound waves (ISWs) [24, 38, 39] as below
$\begin{eqnarray}{\rm{i}}{E}_{t}+\displaystyle \frac{1}{2}{E}_{{xx}}-{nE}=0,\end{eqnarray}$
$\begin{eqnarray}{n}_{{tt}}-{n}_{{xx}}-2{\left(| E{| }^{2}\right)}_{{xx}}=0,\end{eqnarray}$
where the electric field of the Langmuir oscillation and the density perturbation are represented by $E\,{{\rm{e}}}^{{\rm{i}}{\omega }_{p}t}$ and n in the normal form, respectively. Here, we supervise the method of dynamical models concerning the ISW with the effect of the ponderomotive force owing to the high-frequency area, as well as for the LW, which is one variety of nonlinear wave models. The implementation of novel types of soliton solutions for the LW and ISWs has an extremely prominent status through the contributors. A few studies have converged on the Langmuir solitons. Musher et al [40] give support to the application of the weak turbulence hypothesis to LW turbulence, and consideration was given to plasma under relative unmagnetized and magnetized electron and ion temperatures. Zakharov [41] expressed the method of dynamical models for the LW. Benilov [42] illustrated the stability of solitons through the Zakharov model, that recognizes the interaction between ISWs and LWs. In [38, 40], a system of equations for the ISW under the action of the ponderomotive force due to the high-frequency field and the LW was discussed.
The main motivation for this work is to study the model for the LWs and ISWs via the modified $\left(\tfrac{G^{\prime} }{G}\right)$ -expansion method [22, 43]. The essential advantage of this technique over the other methods in the literature is that it provides novel explicit analytical wave solutions, including many real free parameters. The closed-form wave solutions of nonlinear NPDEs have their significant meaning to reveal the interior device of the physical phenomena. Furthermore, the calculations in this method are very simple and vital to providing new solutions compared to the steps in other approaches.
The synopsis of this paper is shown below. We mention the algorithm of the new method in section 2. The implementation of our approach for solving the solitary wave phenomena of the studied model is manifested and some discussions are provided in section 3. Finally, some outcomes of the research are presented in section 4.

2. A brief description of the modified $\left(\tfrac{G^{\prime} }{G}\right)$ -expansion scheme

The following strides summarize the modified $\left(\tfrac{G^{\prime} }{G}\right)$ -expansion method [22, 43].
Suppose an NPDE has the form:
$\begin{eqnarray}H(h,{h}_{x},{h}_{{xx}},{h}_{t},{h}_{{tt}},{h}_{{xt}},\cdots )=0,\end{eqnarray}$
where h = h(x, t) and H is a polynomial in its arguments. Assume that:
$\begin{eqnarray}h=h(x,t)=h(\xi ),\xi =k(x-{Vt}+{\xi }_{0}),\end{eqnarray}$
where k, ξ0 and V are constants. From equation (2) and equation (3), we get
$\begin{eqnarray}R(h,{{kh}}^{{\prime} },{k}^{2}{h}^{{\prime\prime} },-{{kVh}}^{{\prime} },{k}^{2}{V}^{2}{h}^{{\prime\prime} },-{k}^{2}{V}^{2}{h}^{{\prime\prime} },\cdots )=0.\end{eqnarray}$

Postulation 1: calculate m using the rule of the homogeneous analysis in (4).

Postulation 2: the modified $\left(\tfrac{G^{\prime} }{G}\right)$ -expansion technique suggested that

$\begin{eqnarray}h(\xi )=\displaystyle \sum _{i=-m}^{m}{A}_{i}{{\rm{\Theta }}}^{i},\end{eqnarray}$
where ${\rm{\Theta }}=\left(\tfrac{{G}^{{\prime} }}{G}+\tfrac{\lambda }{2}\right)$ , ∣Am∣ + ∣Am∣ ≠ 0 and G = G(ξ) is given by
$\begin{eqnarray}{G}^{{\prime\prime} }+\lambda {G}^{{\prime} }+\mu G=0,\end{eqnarray}$
where Ai, $\delta$ and $\mu$ are free parameters. From (6), we have
$\begin{eqnarray}{\rm{\Theta }}^{\prime} =b-{{\rm{\Theta }}}^{2},\end{eqnarray}$
where $b=\tfrac{{\lambda }^{2}-4\mu }{4}$ . So, Θ now satisfies the Riccati-like equation (7) that admits the following solutions [44]

If b > 0, then

$\begin{eqnarray}{\rm{\Theta }}=\sqrt{b}\tanh (\sqrt{b}\xi ),\end{eqnarray}$
$\begin{eqnarray}{\rm{\Theta }}=\sqrt{b}\coth (\sqrt{b}\xi ),\end{eqnarray}$

If b = 0, then

$\begin{eqnarray}{\rm{\Theta }}=\displaystyle \frac{1}{\xi },\end{eqnarray}$

If b < 0, then

$\begin{eqnarray}{\rm{\Theta }}=-\sqrt{-b}\tan (\sqrt{-b}\xi ),\end{eqnarray}$
$\begin{eqnarray}{\rm{\Theta }}=\sqrt{-b}\cot (\sqrt{-b}\xi ).\end{eqnarray}$

Postulation 3: inserting (5) and (7) into (4), and collecting all terms with the same order of Θ together, the left-hand side of equation (4) is converted into the polynomial in Θ. Equating each coefficient of this polynomial to zero yields a set of algebraic equations which can be solved to find the values of the unknown parameters. Thus, the general solutions of equation (2) are obtained.

3. Soliton solutions for the model system related to ISWs and LWs

Here, we study the coupled nonlinear system of the model related to ISWs and LWs [24, 38, 39]:
$\begin{eqnarray}{\rm{i}}{E}_{t}+\displaystyle \frac{1}{2}{E}_{{xx}}-{nE}=0,\end{eqnarray}$
$\begin{eqnarray}{n}_{{tt}}-{n}_{{xx}}-2{\left(| E{| }^{2}\right)}_{{xx}}=0.\end{eqnarray}$
Let us consider the transformations:
$\begin{eqnarray}\begin{array}{rcl}E(x,t) & = & U(\xi ){{\rm{e}}}^{{\rm{i}}\theta },n(x,t)=V(\xi ),\\ \xi & = & {rx}+{st},\theta ={px}+{qt},\end{array}\end{eqnarray}$
where r, s, p and q are constants. We obtain:
$\begin{eqnarray}{\rm{i}}(s+{rp})U^{\prime} =0,\end{eqnarray}$
$\begin{eqnarray}{r}^{2}U^{\prime\prime} -(2q+{p}^{2})U-2{UV}=0,\end{eqnarray}$
$\begin{eqnarray}({s}^{2}-{r}^{2})V^{\prime\prime} -2{r}^{2}({U}^{2})^{\prime\prime} =0.\end{eqnarray}$
From (13) and by integrating (15) twice w.r.t. ξ, we get:
$\begin{eqnarray}V(\xi )=\displaystyle \frac{2}{{p}^{2}-1}{U}^{2}(\xi ),s=-{rp},\end{eqnarray}$
where the integration's constants are identical zero. Substituting equation (16) into equation (14), we reach:
$\begin{eqnarray}{r}^{2}({p}^{2}-1)U^{\prime\prime} -({p}^{2}-1)(2q+{p}^{2})U-4{U}^{3}=0,\end{eqnarray}$
where $U^{\prime} =\tfrac{{\rm{d}}U}{{\rm{d}}\xi }$ and $U^{\prime\prime} =\tfrac{{{\rm{d}}}^{2}U}{{\rm{d}}{\xi }^{2}}$ . Applying the homogeneous balance condition on 17 yields the positive integer M = 1. So, the general solution takes the form:
$\begin{eqnarray}U(\xi )={A}_{1}{\rm{\Theta }}(\xi )+{A}_{0}+{A}_{-1}{{\rm{\Theta }}}^{-1}(\xi ).\end{eqnarray}$
Plugging (18) into (17) and by applying postulation 3, we find that:

Result 1: $q=\pm \tfrac{\sqrt{4\mu {r}^{2}-2{p}^{2}-{\lambda }^{2}{r}^{2}}}{2}$ , ${A}_{0}=0,{A}_{1}=0,{f}_{1}\,=\pm \sqrt{\tfrac{{p}^{2}-1}{2}}$ , and ${A}_{-1}=\tfrac{{f}_{1}r({\lambda }^{2}-4\mu )}{4}$ . We get the following solutions:

$\begin{eqnarray*}\begin{array}{rcl}{E}_{11}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ \left.\coth \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right],\\ {n}_{11}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ {\left.\coth \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right]}^{2}.\\ {E}_{12}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ \left.\tanh \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right],\\ {n}_{12}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl} & & \times \ {\left.\tanh \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right]}^{2}.\\ {E}_{13}(x,t) & = & -{{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\\ & & \times \ \left.\cot \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right],\\ {n}_{13}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[-\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\\ & & \times \ {\left.\cot \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right]}^{2}.\\ {E}_{14}(x,t) & = & -{{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl} & & \times \ \left.\tan \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right],\\ {n}_{14}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\\ & & \times \ {\left.\tan \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right]}^{2}.\\ {E}_{15}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r({\lambda }^{2}-4\mu )}{4}\right.\\ & & \times \ \left.\displaystyle \frac{1}{({rx}+{st})}\right],\\ {n}_{15}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r({\lambda }^{2}-4\mu )}{4}\right.\\ & & \times \ {\left.\displaystyle \frac{1}{({rx}+{st})}\right]}^{2}.\end{array}\end{eqnarray*}$

Result 2: $q=\pm \tfrac{\sqrt{4\mu {r}^{2}-2{p}^{2}-{\lambda }^{2}{r}^{2}}}{2}$ , A0 = 0, A1 = f1r, and A−1 = 0. We have:

$\begin{eqnarray*}\begin{array}{rcl}{E}_{21}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ \left.\tanh \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right],\\ {n}_{21}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ {\left.\tanh \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right]}^{2}.\\ {E}_{22}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ \left.\coth \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right],\\ {n}_{22}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ {\left.\coth \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right]}^{2}.\\ {E}_{23}(x,t) & = & -{{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\\ & & \times \ \left.\tan \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right],\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{n}_{23}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[-\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\\ & & \times \ {\left.\tan \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right]}^{2}.\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{E}_{24}(x,t) & = & -{{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\\ & & \times \ \left.\cot \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right],\\ {n}_{24}(x,t) & = & -\displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\\ & & \times \ {\left.\cot \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right]}^{2}.\\ {E}_{25}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r({\lambda }^{2}-4\mu )}{4}\right.\\ & & \times \ \left.\displaystyle \frac{1}{({rx}+{st})}\right],\\ {n}_{25}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r({\lambda }^{2}-4\mu )}{4}\right.\\ & & \times \ {\left.\displaystyle \frac{1}{({rx}+{st})}\right]}^{2}.\end{array}\end{eqnarray*}$

Result 3: $q=\pm \sqrt{\tfrac{{\lambda }^{2}{r}^{2}-4\mu {r}^{2}-{p}^{2}}{2}}$ , A0 = 0, A1 = f1r, and ${A}_{-1}=-\tfrac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{8{f}_{1}}$ . We obtain:

$\begin{eqnarray*}\begin{array}{rcl}{E}_{31}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ \tanh \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\\ & & -\ \left.\displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\right.\\ & & \times \ \left.\coth \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right],\\ {n}_{31}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ \tanh \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\\ & & -\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl} & & \times \ {\left.\coth \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right]}^{2}.\\ {E}_{32}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ \coth \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\\ & & -\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\\ & & \times \ \left.\tanh \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right],\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{n}_{32}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ \coth \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\\ & & -\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\\ & & \times \ {\left.\tanh \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right]}^{2}.\\ {E}_{33}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\\ & & \times \ \tan \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\\ & & -\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\\ & & \times \ \left.\cot \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right],\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{n}_{33}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\\ & & \times \ \tan \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\\ & & -\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\\ & & \times \ {\left.\cot \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right]}^{2}.\\ {E}_{34}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl} & & \times \ \cot \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\\ & & -\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\\ & & \times \ \left.\tan \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right],\\ {n}_{34}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\\ & & \times \ \cot \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\\ & & -\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\\ & & \times \ {\left.\tan \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right]}^{2}.\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{E}_{35}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r({\lambda }^{2}-4\mu )}{4}\right.\\ & & \times \ \displaystyle \frac{1}{({rx}+{st})}\\ & & -\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{8{f}_{1}}\\ & & \times \ \left.\displaystyle \frac{1}{({rx}+{st})}\right],\\ {n}_{35}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r({\lambda }^{2}-4\mu )}{4}\right.\\ & & \times \ \displaystyle \frac{1}{({rx}+{st})}\\ & & -\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{8{f}_{1}}\\ & & \times \ {\left.\displaystyle \frac{1}{({rx}+{st})}\right]}^{2}.\end{array}\end{eqnarray*}$

Result 4: $q=\pm \sqrt{\tfrac{8\mu {r}^{2}-2{\lambda }^{2}{r}^{2}-{p}^{2}}{2}}$ , A0 = 0, A1 = f1r, and ${A}_{-1}=\tfrac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{8{f}_{1}}$ . We get:

$\begin{eqnarray*}\begin{array}{rcl}{E}_{41}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ \tanh \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\\ & & +\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\\ & & \times \ \left.\coth \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right],\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{n}_{41}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ \tanh \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\\ & & +\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\\ & & \times \ {\left.\coth \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right]}^{2}.\\ {E}_{42}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ \coth \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\\ & & +\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\\ & & \times \ \left.\tanh \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right],\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{n}_{42}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r\sqrt{{\lambda }^{2}-4\mu }}{2}\right.\\ & & \times \ \coth \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\\ & & +\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\\ & & \times \ {\left.\tanh \left\{\displaystyle \frac{\sqrt{{\lambda }^{2}-4\mu }}{2}({rx}+{st})\right\}\right]}^{2}.\\ {E}_{43}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\\ & & \times \ \tan \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\\ & & +\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\\ & & \times \ \left.\cot \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right],\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{n}_{43}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\\ & & \times \ \tan \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\\ & & +\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl} & & \times \ {\left.\cot \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right]}^{2}.\\ {E}_{44}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\\ & & \times \ \cot \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\\ & & +\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\\ & & \times \ \left.\tan \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right],\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{n}_{44}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r\sqrt{4\mu -{\lambda }^{2}}}{2}\right.\\ & & \times \ \cot \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\\ & & +\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{4{f}_{1}\sqrt{4\mu -{\lambda }^{2}}}\\ & & \times \ {\left.\tan \left\{\displaystyle \frac{\sqrt{4\mu -{\lambda }^{2}}}{2}({rx}+{st})\right\}\right]}^{2}.\\ {E}_{45}(x,t) & = & {{\rm{e}}}^{{\rm{i}}({px}+{qt})}\left[\displaystyle \frac{{f}_{1}r({\lambda }^{2}-4\mu )}{4}\right.\\ & & \times \ \displaystyle \frac{1}{({rx}+{st})}\\ & & +\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{8{f}_{1}}\\ & & \times \ \left.\displaystyle \frac{1}{({rx}+{st})}\right],\\ {n}_{45}(x,t) & = & \displaystyle \frac{2}{{p}^{2}-1}\left[\displaystyle \frac{{f}_{1}r({\lambda }^{2}-4\mu )}{4}\right.\\ & & \times \ \displaystyle \frac{1}{({rx}+{st})}\\ & & +\ \displaystyle \frac{r({p}^{2}{\lambda }^{2}-4{p}^{2}\mu -{\lambda }^{2}+4\mu )}{8{f}_{1}}\\ & & \times \ {\left.\displaystyle \frac{1}{({rx}+{st})}\right]}^{2}.\end{array}\end{eqnarray*}$

3.1. Physical and graphical explanation of constructed solutions

In this section, we have explained the results of the coupled nonlinear system of the model for ISWs and LWs by drawing some 3D, 2D and the contour figures of the succeeded solutions with the support of the symbolic calculation software Maple. The graphical illustrations of 3D, 2D and contour plots for some of the obtained solutions are given in figures 112. Figure 1 depicts the 3D plot, 2D plot and the corresponding contour plot of solution E11(x, t) that behaves like the spike shape solution. Figures 2, 11 and 12 depict the 3D plot, 2D plot and the corresponding contour plot of solutions n11(x, t), E45(x, t) and n45(x, t), respectively, that represent the singular soliton solutions. Singular solitons are other varieties of solitary waves that give up under a singularity, typically countless discontinuity. Moreover, they can be connected under solitary waves when the midpoint location of the extraordinary wave is missing. Simultaneously, with these lines it is not necessary to address the problem of singular solitons. This answer has spiked and, in this manner, can likely clarify the improvement of rogue waves. Figures 36, 8 and 10 depict the 3D plot, 2D plot and the corresponding contour plots of solutions E13(x, t), n13(x, t) E14(x, t), n14(x, t), n23(x, t) and n24(x, t), respectively, that represent the periodic wave solution. Herein, the special kind of periodic wave solutions of the solutions E23(x, t) and E24(x, t) are shown in figures 7 and 9.
Figure 1. Graphical descriptions of the solution E11(x, t) under the values p = 2, q = 0.5, r = 2, $\mu$ = 1, $\delta$ = 3 and t = 0.01 for 2D graphics.
Figure 2. Graphical descriptions of the solution n11(x, t) under the values p = 2, q = 0.5, r = 2, $\mu$ = 1, $\delta$ = 3 and t = 0.01 for 2D graphics.
Figure 3. Graphical descriptions of the solution E13(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 4. Graphical descriptions of the solution n13(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 5. Graphical descriptions of the solution E14(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 6. Graphical descriptions of the solution n14(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 7. Graphical descriptions of the solution E23(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 8. Graphical descriptions of the solution n23(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 9. Graphical descriptions of the solution E24(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 10. Graphical descriptions of the solution n24(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 11. Graphical descriptions of the solution E45(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 12. Graphical descriptions of the solution n45(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.

4. Conclusion

In this work, we successfully executed the modified $(G^{\prime} /G)$ -expansion approach to obtain the closed-form wave structures of the studied equation. Furthermore, this approach concerned new closed-form wave structures like rational, trigonometrical and hyperbolic function solutions. The techniques prescribed the well-designed systems for supervising various nonlinear wave equations with integer-order and also with fraction order arising in several applications of applied sciences. As can be seen from the above solution process, the modified $(G^{\prime} /G)$ -expansion method is very effective for solving different types of NPDEs. Our results show that the structures of the obtained wave solutions are multifarious in nonlinear dynamic systems. In the near future, we will modify the algorithm presented here to deal with different NPDEs when their coefficients are variables, for exhaling nonautonomous wave solutions.
1
Durur H Ilhan E Bulut H 2020 Novel complex wave solutions of the (2 + 1)-dimensional hyperbolic nonlinear Schrödinger equation Fractal Fract. 4 41

DOI

2
Gao W Baskonus H M Shi L 2020 New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-nCoV system Adv. Differ. Equ. 2020 391

DOI

3
Manafian J Mohammed S A Alizadeh A A Baskonus H M Gao, W 2020 Investigating lump and its interaction for the third-order evolution equation arising propagation of long waves over shallow water Eur. J. Mech. B Fluids 84 289 301

DOI

4
Gao W Senel M Yel G Baskonus H M Senel B 2020 New complex wave patterns to the electrical transmission line model arising in network system AIMS Math. 5 1881 1892

DOI

5
Goyal M Baskonus H M Prakash A 2020 Regarding new positive, bounded and convergent numerical solution of nonlinear time fractional HIV/AIDS transmission model Chaos Soliton Fract. 139 110096

DOI

6
Liu J G Zhu W H Osman M S Ma W X 2020 An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo-Miwa model Eur. Phys. J. Plus 135 412

DOI

7
Ali K K Osman M S Abdel-Aty M 2020 New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method Alex. Eng. J. 59 1191 1196

DOI

8
Gao W Veeresha P Baskonus H M Prakasha D G Kumar P 2019 A new study of unreported cases of 2019-nCOV epidemic outbreaks Chaos Soliton 109929

DOI

9
Garca Guirao J L Baskonus H M Kumar A Rawat M S Yel G 2020 Complex patterns to the (3 + 1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation Symmetry 12 17

DOI

10
Lu D Osman M S Khater M M A Attia R A M Baleanu D 2020 Analytical and numerical simulations for the kinetics of phase separation in iron (Fe-Cr-X (X = Mo, Cu)) based on ternary alloys Physica 537 122634

DOI

11
Kurt A Tozar A Tasbozan O 2020 Applying the new extended direct algebraic method to solve the equation of obliquely interacting waves in shallow waters J. Ocean U. China 19 772 780

DOI

12
Guo M Dong H Liu J Yang H 2019 The time-fractional mZK equation for gravity solitary waves and solutions using sech-tanh and radial basic function method Nonlinear Anal. Model. 24 1 19

DOI

13
Abdul Kayum M Ali Akbar M Osman M S 2020 Stable soliton solutions to the shallow water waves and ion-acoustic waves in a plasma Wave Random Complex

DOI

14
Baskonus H M Bulut H 2016 New wave behaviors of the system of equations for the ion sound and Langmuir waves Waves Random Complex Media 26 613 625

DOI

15
Kumar V S Rezazadeh H Eslami M Izadi F Osman M S 2019 Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity Int. J. Appl. Comput. Math. 5 127

DOI

16
Osman M S Ali K K Gómez-Aguilar J F 2020 A variety of new optical soliton solutions related to the nonlinear Schrödinger equation with time-dependent coefficients Optik 222 165389

DOI

17
Ghanbari B Osman M S Baleanu D 2019 Generalized exponential rational function method for extended Zakharov-Kuzetsov equation with conformable derivative Mod. Phys. Lett. A 34 1950155

DOI

18
Osman M S Ghanbari B Machado J A T 2019 New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity Eur. Phys. J. Plus 134 20

DOI

19
Mohyud-Din S T Irshad A Ahmed N Khan U 2017 Exact solutions of (3 + 1)-dimensional generalized KP equation arising in physics Results Phys. 7 3901 3909

DOI

20
Raza N Osman M S Abdel-Aty A H Abdel-Khalek S Besbes H R 2020 Optical solitons of space-time fractional Fokas-Lenells equation with two versatile integration architectures Adv. Differ. Equ. 2020 517

DOI

21
Alam M N Akbar M A Mohyud-Din S T 2014 A novel $(G^{\prime} /G)$ -expansion method and its application to the Boussinesq equation Chin. Phys. B 23 020203 020203 020210

DOI

22
Akbar M A Alam M N Hafez M G 2016 Application of the Novel $({G}^{{\prime} }/G)$ -expansion method to traveling wave solutions for the positive Gardner-KP equation Indian J. Pure Appl. Math. 47 85 96

DOI

23
Demiray S T Bulut H 2016 New exact solutions of the system of equations for the ion sound and Langmuir waves by ETEM Math. Comput. Appl. 21 11

DOI

24
Manafian J 2017 Application of the ITEM for the system of equations for the ion sound and Langmuir waves Opt. Quant. Electron. 49 17

DOI

25
Parsa A B Rashidi M M Anwar O B Sadri S M 2013 Semi-computational simulation of magnetohemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods Comput. Biol. Med. 43 1142 1153

DOI

26
Zhao X Wang L Sun W 2006 The repeated homogeneous balance method and its applications to nonlinear partial differential equations Chaos Soliton. Frac. 28 448 453

DOI

27
Hosseini K Ansari R 2017 New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method Waves Random Complex Media 27 628 636

DOI

28
Mirzazadeh M Alqahtani R T Biswas A 2017 Optical soliton perturbation with quadratic-cubic nonlinearity by Riccati-Bernoulli sub-ODE method and Kudryashov's scheme Optik 145 74 78

DOI

29
Alam M N Alam M M 2017 An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules J. Taibah Univ. Sci. 11 939 948

DOI

30
Alam M N Belgacem F B M 2016 Microtubules nonlinear models dynamics investigations through the exp-φ(ξ)-expansion method implementation Mathematics 4 6

DOI

31
Abdel-Gawad H I Osman M S 2013 On the variational approach for analyzing the stability of solutions of evolution equations Kyungpook Math. J. 53 661 680

DOI

32
Osman M S Rezazadeh H Eslami M 2019 Traveling wave solutions for (3+1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity Nonlinear Eng. 8 559 567

DOI

33
Osman M S Rezazadeh H Eslami M Neirameh A Mirzazadeh M 2018 Analytical study of solitons to Benjamin-Bona-Mahony-Peregrine equation with power law nonlinearity by using three methods U.P.B. Sci. Bull. Series A 80 267 278

34
Abdel-Gawad H I Osman M 2014 Exact solutions of the Korteweg-de Vries equation with space and time dependent coefficients by the extended unified method Indian J. Pure Appl. Math. 45 1 12

DOI

35
Osman M S 2017 Analytical study of rational and double-soliton rational solutions governed by the KdV-Sawada-Kotera-Ramani equation with variable coefficients Nonlinear Dyn. 89 2283 2289

DOI

36
Osman M S Abdel-Gawad H I 2015 Multi-wave solutions of the (2 + 1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients Eur. Phys. J. Plus 130 215

DOI

37
Abdel-Gawad H I Elazab N S Osman M 2013 Exact solutions of space dependent Korteweg-de Vries equation by the extended unified method J. Phys. Soc. Jpn. 82 044004

DOI

38
Baskonus H M Bulut H 2016 New wave behaviors of the system of equations for the ion sound and Langmuir waves Waves Random Complex Media 26 613 625

DOI

39
Khater M M A Attia R A M Park C Lu D 2020 On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion-acoustic) waves Results Phys. 18 103317

DOI

40
Musher S L Rubenchik A M Zakharov V E 1995 Weak Langmuir turbulence Phys. Rep. 252 178 274

DOI

41
Zakharov V E 1972 Collapse of Langmuir waves Sov. Phys. JETP 35 908 914

42
Benilov E S 1985 Stability of plasma solitons Zhurnal. Eksp. Theor. Fiz. 88 120 128

43
Alam M N Tunc C 2020 Constructions of the optical solitons and other solitons to the conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity J. Taibah Univ. Sci. 14 94 100

DOI

44
Engui F 2000 Extended tanh-function method and its applications to nonlinear equations Phys. Lett. A 277 212 218

DOI

Outlines

/