1. Introduction
which may be viewed as a one-parameter perturbation of Toda lattice, where xn = x(n, t) is the function of the discrete spatial variable n and time variable t, in which n ∈ Z, t ∈ R, ${x}_{n,t}=\tfrac{{\rm{d}}x}{{\rm{d}}t},{x}_{n,{tt}}=\tfrac{{{\rm{d}}}^{2}x}{{\rm{d}}{t}^{2}}$, and $\alpha$ is a small parameter whose physical meaning is the inverse speed of light. When $\alpha$ → 0 or $\alpha$ = 0, equation (
the time evolutions of an and bn are governed by the following equations of motion [8]:
where an = a(n, t) and bn = b(n, t) are the functions of discrete and time variables n and t respectively, and ${a}_{n,t}=\tfrac{{\rm{d}}{a}_{n}}{{\rm{d}}t},{b}_{n,t}=\tfrac{{\rm{d}}{b}_{n}}{{\rm{d}}t}$. Equation (
which is somewhat different from ones in [8], where λ is the spectral parameter independent of time t, E is the shift operator defined by Ef(n, t) = f(n + 1, t), E−1f(n, t) = f(n − 1, t), $u={({a}_{n},{b}_{n+1})}^{{\rm{T}}}$ are the potential functions of variables n, t, and ${\phi }_{n}={({\varphi }_{n},{\psi }_{n})}^{{\rm{T}}}$ (T means transpose) is an eigenfunction vector. The compatibility condition Un,t = (EVn)Un − UnVn between the spatial part (
Figure 1. A one-dimensional lattice with fixed ends (see the first figure in [1]). |
2. A RTL_($\alpha$) hierarchy and its Hamiltonian structures
in which
results in the following recursion relations
where ${A}_{n}^{\left(j\right)},$ ${B}_{n}^{\left(j\right)}$ and ${C}_{n}^{\left(j\right)}$ are the functions of an, bn. Now we choose the initial condition ${A}_{n}^{\left(0\right)}=-\tfrac{1}{2\alpha }$, the recursion relations (
If ${P}_{n}^{\left(m\right)}$ is defined by
from equation (
Since
we can see that (
then
Let us set ${V}_{n}^{\left(m\right)}={P}_{n}^{\left(m\right)}+{\delta }_{n}$ such that
Assuming that the time evolution of φn meets the equations ${\phi }_{n,{tm}}={V}_{n}^{\left(m\right)}{\phi }_{n}$, then the compatibility condition $E{\phi }_{n,{tm}}={(E{\phi }_{n})}_{{tm}}$ implies
which yields the following integrable lattice hierarchy:
(1)When m = 0, the lattice hierarchy in equation (
whose time part of Lax pair is
which is a little different from equation (
whose time part of Lax pair is
in which
Here equation (
then we have
By using the trace identity [33]
we arrive at
Comparing the coefficients of λ−2m−3 on both sides of equation (
Setting m = 0, from equation (
where ${A}_{n}^{\left(m+1\right)}=-{a}_{n}{f}_{n}^{\left(m+1\right)},$ ${B}_{n}^{\left(m+1\right)}={a}_{n}{g}_{n}^{\left(m+1\right)},$ ${C}_{n}^{\left(m+1\right)}=-{E}^{-1}{g}_{n}^{\left(m+1\right)}.$ Then equation (
in which
Taking $\eta =\left(\begin{array}{cc}{\eta }_{11} & {\eta }_{12}\\ {\eta }_{21} & {\eta }_{22}\end{array}\right)$ to satisfy $\tfrac{\delta {H}_{n}^{\left(m+1\right)}}{\delta u}=\eta \tfrac{\delta {H}_{n}^{\left(m\right)}}{\delta u}$, then by recursion relations (
Hence, equation (
Hence we have successfully written the lattice hierarchy (
The hierarchy (
3. Conservation laws of equation (3 )
and
Inserting ${\theta }_{n}={\sum }_{j=0}^{n}{\theta }_{n}^{\left(j\right)}{\lambda }^{-j}$ into (
From the time part (
From (
Equating the same powers of λ on both sides of equation (
with
where Tk and Xk denote the conserved densities and associated fluxes respectively. ${\sum }_{n=-\infty }^{+\infty }{T}_{k}\ (k=1,2,\ldots )$ are motion constants, and $-{\sum }_{n=-\infty }^{+\infty }{T}_{1}$ and ${\sum }_{n=-\infty }^{+\infty }{T}_{2}$ in physical meanings represent the total momentum and total energy of the lattice respectively. The existence of infinitely many conservation laws means that equation (
4. Discrete generalized (m, 2N − m)-fold DT of equation (3 )
where ${\tilde{\phi }}_{n}$ satisfies the Lax pair (
where ${\tilde{U}}_{n}={T}_{n+1}{U}_{n}{T}_{n}^{-1}$ and ${\tilde{V}}_{n}^{\left(0\right)}=({T}_{n,t}+{V}_{n}^{\left(0\right)}{T}_{n}){T}_{n}^{-1}$ have the same forms as Un, ${V}_{n}^{\left(0\right)}$ expect for the new potentials ${\tilde{a}}_{n},$ ${\tilde{b}}_{n}$ instead of the old potentials an, bn. To guarantee the validity of the discrete 2N-fold DT, we need to construct a special Darboux matrix Tn defined by
in which the number N is a positive integer, and ${f}_{n}^{\left(2j\right)},{g}_{n}^{\left(2j-1\right)},$ ${r}_{n}^{\left(2j-1\right)}$ and ${s}_{n}^{\left(2j\right)}\ (j=1,2,\ldots N)$ are functions of the variables n and t which are determined by the linear algebraic system T(λi)φi,n(λi) = 0 (i = 1, 2, …, 2N), where ${\phi }_{i,n}{({\lambda }_{i})={({\varphi }_{i,n}({\lambda }_{i,n}),{\psi }_{i,n}({\lambda }_{i}))}^{{\rm{T}}}\equiv ({\varphi }_{i,n},{\psi }_{i,n})}^{{\rm{T}}}$ are 2N solutions of Lax pair (
Let ${\phi }_{i,n}{({\lambda }_{i})=({\varphi }_{i,n},{\psi }_{i,n})}^{{\rm{T}}}$ be 2N column vector solutions of Lax pair (
where
in which
whereas ${\rm{\Delta }}{f}_{n}^{\left(2N\right)}$ and ${g}_{n}^{\left(1\right)}$ are obtained from the determinant ${{\rm{\Delta }}}_{1,n}$ by replacing the Nth and $(N+1)$th columns with the column vector $(-1,-1,\ldots -1)$, respectively, and ${\rm{\Delta }}{r}_{n}^{\left(1\right)}$ is given from the determinant ${{\rm{\Delta }}}_{2,n}$ by replacing its first column with the column vector $(-{\delta }_{1,n},-{\delta }_{2,n},\ldots ,-{\delta }_{2N,n})$. Moreover, the term ${f}_{n-1}^{\left(2N\right)}$ is derived from ${f}_{n}^{\left(2N\right)}$ by replacing the index n with $n-1$.
Let ${T}_{n}^{-1}={T}_{n}^{* }/\det {T}_{n}$ and
By direct calculation we know that ${f}_{11}(\lambda ,n)$ is the $(4N+2)$th order polynomial in λ, ${f}_{12}(\lambda ,n)$, ${f}_{21}(\lambda ,n)$ are the $(4N+1)$th order polynomials in λ, and ${f}_{22}(\lambda ,n)$ is the $(4N)$th order polynomial in λ.
Through direct calculations, we can verify that λi (i = 1, 2, …, 2N) are the roots of fj,k(λ, n) (j, k = 1, 2). Therefore, we can rewrite (
with
Hence we have
Compare the coefficient of λ on both sides of equation (
Thus, we have ${P}_{n}={\tilde{U}}_{n}$. In other words, the matrices Un and ${\tilde{U}}_{n}$ have the same forms under the transformations (
Through a straightforward calculation, we know that g11(λ, n), g22(λ, n) are (4N + 2)th order polynomials in λ, g12(λ, n), g21(λ, n) are (4N + 1)th order polynomials in λ.
from which we can verify that g11(λi, n), g12(λi, n), g21(λi, n) and g22(λi, n) are all zeroes, so we have
with
Therefore we obtain
Expanding and comparing the coefficient of λ on both sides of equation (
Therefore, we obtain ${R}_{n}={\tilde{V}}_{n}^{\left(0\right)}$, that is to say, the matrices ${V}_{n}^{\left(0\right)}$ and ${\tilde{V}}_{n}^{\left(0\right)}$ have the same forms under the transformations (
where ${\varphi }_{n}^{\left(k\right)}({\lambda }_{i})=\tfrac{1}{k!}\tfrac{{\partial }^{k}}{\partial {\lambda }_{i}^{k}}{\varphi }_{n}({\lambda }_{i})$, and ϵ is a small parameter. In the expression (
from which the determinant of the coefficients for system (
Let ${\phi }_{i,n}{({\lambda }_{i})=({\varphi }_{i,n},{\psi }_{i,n})}^{{\rm{T}}}$ be m column vector solutions of Lax pair (
where
with ${{\rm{\Delta }}}_{1}=({{\rm{\Delta }}}_{1}^{\left(1\right)}$, ${{\rm{\Delta }}}_{1}^{\left(2\right)},\ldots ,{{\rm{\Delta }}}_{1}^{\left(m\right)}{)}^{{\rm{T}}}$, ${{\rm{\Delta }}}_{2}=({{\rm{\Delta }}}_{2}^{\left(1\right)}$, ${{\rm{\Delta }}}_{2}^{\left(2\right)},\ldots ,{{\rm{\Delta }}}_{2}^{\left(m\right)}{)}^{{\rm{T}}}$, ${{\rm{\Delta }}}_{1}^{\left(i\right)}={({{\rm{\Delta }}}_{1,j,s}^{\left(i\right)})}_{2({v}_{i}+1)\times 2N}$, ${{\rm{\Delta }}}_{2}^{\left(i\right)}={({{\rm{\Delta }}}_{2,j,s}^{\left(i\right)})}_{2({v}_{i}+1)\times 2N}$, in which ${{\rm{\Delta }}}_{1,j,s}^{\left(i\right)}$, ${{\rm{\Delta }}}_{2,j,s}^{\left(i\right)}(1\leqslant j\leqslant 2({v}_{i}+1)$, $1\leqslant s\leqslant 2N,i=1,2,\ldots ,m)$ are given as
where ${\rm{\Delta }}{f}_{n}^{\left(2N\right)}$ and ${g}_{n}^{\left(1\right)}$ are given from the determinant ${{\rm{\Delta }}}_{1}$ by replacing their Nth and $(N+1)$ th columns by the column vector $({f}_{1}^{\left(1\right)},{f}_{2}^{\left(1\right)},\ldots ,{f}_{({v}_{1}+1)}^{\left(1\right)},\ldots ,{f}_{1}^{\left(i\right)},{f}_{2}^{\left(i\right)},\ldots ,{f}_{({v}_{i}+1)}^{\left(i\right)},\ldots ,{f}_{1}^{\left(m\right)},{f}_{2}^{\left(m\right)},\ldots ,{f}_{({v}_{m}+1)}^{\left(m\right)})$ with ${f}_{j}^{\left(i\right)}=-{\varphi }_{i,n}^{\left(j-1\right)}(1\leqslant j\leqslant ({v}_{i}+1),1\leqslant i\leqslant m)$ respectively, while ${\rm{\Delta }}{r}_{n}^{\left(1\right)}$ is obtained from the determinant ${{\rm{\Delta }}}_{2}$ by replacing the first columns by the column vector $({r}_{1}^{\left(1\right)},{r}_{2}^{\left(1\right)},\ldots ,{r}_{({v}_{1}+1)}^{\left(1\right)},\ldots ,{r}_{1}^{\left(i\right)},{r}_{2}^{\left(i\right)},\ldots ,{r}_{({v}_{i}+1)}^{\left(i\right)},\ldots ,{r}_{1}^{\left(m\right)},{r}_{2}^{\left(m\right)},\ldots ,{r}_{({v}_{m}+1)}^{\left(m\right)})$ with ${r}_{j}^{\left(i\right)}=-{\psi }_{i,n}^{\left(j-1\right)}(1\leqslant j\leqslant ({v}_{i}+1),1\leqslant i\leqslant m)$.
Here the transformations (
5. Explicit exact solutions and asymptotic state analysis of equation (3 )
5.1. Multi-soliton solutions via the discrete generalized (2N, 0)-fold DT
with
According to (
Figure 2. (Color online) One-soliton solutions with parameters ${\lambda }_{1}=\tfrac{3}{5},{\lambda }_{2}=2,\alpha =\tfrac{8}{15},{C}_{11}=1,{C}_{12}=\tfrac{1}{2},{C}_{21}=1,{C}_{22}=2$. (a1) The component ${\tilde{a}}_{n}$. (a2) The component ${\tilde{b}}_{n}$. The propagation processes for $(b1)\ {\tilde{a}}_{n}$ and $(b2)\ {\tilde{b}}_{n}$ at t = −10 (long-dash line), t = 0 (dash-dot line) and t = 10 (dot line). |
where
with
The solutions (
in which
with
The wave structures of one-soliton solutions (
where
with
To find whether the interaction between two solitons is elastic, we carry out the asymptotic analysis for solutions (
After the interaction t → +∞:
where ${a}_{n1}^{\mp },$ ${a}_{n2}^{\mp },$ ${b}_{n1}^{\mp },$ ${b}_{n2}^{\mp }$ stand for the asymptotic state expressions of ${\tilde{a}}_{n}$ and ${\tilde{b}}_{n}$, the '−'sign indicates the limit states before the interaction, while the '+'sign denotes the limit states after the interaction.
Figure 3. (Color online) Head-on elastic interaction between two solitons via the solutions ( |
where
with
When the parameters are suitably chosen, the solutions (
The point here is that the solutions (
Figure 4. (Color online) Three-soliton elastic interaction structures via the solutions ( |
Figure 5. (Color online) Four-soliton elastic interaction structures via the solutions ( |
Figure 6. (Color online) Soltion structures of the combined potential term ${\tilde{a}}_{n}{\tilde{b}}_{n}$. (a1) (a2) One-soliton structures with the same parameters as in figure 1. (b1) (b2) Two-soliton structures with the same parameters as in figure 2. (c1) (c2) Three-soliton structures with the same parameters as in figure 3. (d1) (d2) Four-soliton structures with the same parameters as in figure 4. |
5.2. Rational and semi-rational solutions via the discrete (1, 2N − 1)-fold DT
where
with
and the other ${({\varphi }_{1,n}^{\left(i\right)},{\psi }_{1,n}^{\left(i\right)})}^{{\rm{T}}}(i=4,5,\cdots )$ are omitted here. From (
in which
with
Through a direct calculation, the simplification analytical expressions of solutions (
from which we can see that ${\tilde{a}}_{n}$ possesses singularity at two paralleled straight lines 10n + 5t − 8 = 0 and 10n + 5t − 2 = 0, while ${\tilde{b}}_{n}$ has singularity at two paralleled straight lines 10n + 5t − 8 = 0 and 10n + 5t − 12 = 0. Moreover, we can conclude that ${\tilde{a}}_{n}\to 1,{\tilde{b}}_{n}\to 0$ as n → ±∞ or t → ±∞.
where
From the above expressions, we can clearly see that the solutions (
where
with
The simplification forms of solutions (
where
Next, we implement the asymptotic analysis to study the rational solutions ${\tilde{a}}_{n}$ and ${\tilde{b}}_{n}$. Let ${\xi }_{1}=2n+t+{\left(\tfrac{3}{10}\sqrt{5}-\tfrac{1}{2}\right)}^{\tfrac{1}{3}}{t}^{\tfrac{1}{3}}$, ${\xi }_{2}=2n+t-{\left(\tfrac{3}{10}\sqrt{5}+\tfrac{1}{2}\right)}^{\tfrac{1}{3}}{t}^{\tfrac{1}{3}}$ and $c={\left(\tfrac{3}{10}\sqrt{5}-\tfrac{1}{2}\right)}^{\tfrac{1}{3}}+{\left(\tfrac{3}{10}\sqrt{5}+\tfrac{1}{2}\right)}^{\tfrac{1}{3}}$,then we can find that the solutions ${\tilde{a}}_{n}$ and ${\tilde{b}}_{n}$ have two different asymptotic states when ∣t∣ → ∞ , which are listed as follows:
(ii) If ${\xi }_{2}=2n+t-{\left(\tfrac{3}{10}\sqrt{5}+\tfrac{1}{2}\right)}^{\tfrac{1}{3}}{t}^{\tfrac{1}{3}}$, from ${\xi }_{1}={\xi }_{2}+{{ct}}^{\tfrac{1}{3}}$ we have ξ1 → ± ∞ when t → ± ∞ , then calculating the limits of solutions an and bn in (
It can be seen that ${a}_{1}^{\pm }$ and ${a}_{2}^{\pm }$ possess singularity at four curves $5{\xi }_{1}-2=0,5{\xi }_{1}-8=0,5{\xi }_{2}-2\,=0,5{\xi }_{2}-8=0$, which also are the four center trajectories of solution ${\tilde{a}}_{n}$, while ${b}_{1}^{\pm }$ and ${b}_{2}^{\pm }$ possess singularity at four curves $5{\xi }_{1}-12=0,5{\xi }_{1}-8=0,5{\xi }_{2}-12=0,5{\xi }_{2}-8=0$, which are also the four center trajectories of solution ${\tilde{b}}_{n}$. From the asymptotic expressions (
where
with
$\begin{array}{rcl}{{\rm{\Delta }}}_{1,n} & = & \left|\begin{array}{cccccc}{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(0\right)} & {\lambda }_{1}^{4}{\varphi }_{1,n}^{\left(0\right)} & {\lambda }_{1}^{6}{\varphi }_{1,n}^{\left(0\right)} & {\lambda }_{1}{\psi }_{1,n}^{\left(0\right)} & {\lambda }_{1}^{3}{\psi }_{1,n}^{\left(0\right)} & {\lambda }_{1}^{5}{\psi }_{1,n}^{\left(0\right)}\\ {\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(1\right)}+2{\lambda }_{1}{\varphi }_{1,n}^{\left(0\right)} & {{\rm{\Delta }}}_{\mathrm{2,2}} & {{\rm{\Delta }}}_{\mathrm{2,3}} & {\lambda }_{1}{\psi }_{1,n}^{\left(1\right)}+{\psi }_{1,n}^{\left(0\right)} & {\lambda }_{1}^{3}{\psi }_{1,n}^{\left(1\right)}+3{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(0\right)} & {{\rm{\Delta }}}_{\mathrm{2,6}}\\ {\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(2\right)}+2{\lambda }_{1}{\varphi }_{1,n}^{\left(1\right)}+{\varphi }_{1,n}^{\left(0\right)} & {{\rm{\Delta }}}_{\mathrm{3,2}} & {{\rm{\Delta }}}_{\mathrm{3,3}} & {\lambda }_{1}{\psi }_{1,n}^{\left(2\right)}+{\psi }_{1,n}^{\left(1\right)} & {\lambda }_{1}^{3}{\psi }_{1,n}^{\left(2\right)}+3{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(1\right)}+3{\lambda }_{1}{\psi }_{1,n}^{\left(0\right)} & {{\rm{\Delta }}}_{\mathrm{3,6}}\\ {\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(3\right)}+2{\lambda }_{1}{\varphi }_{1,n}^{\left(2\right)}+{\varphi }_{1,n}^{\left(1\right)} & {{\rm{\Delta }}}_{\mathrm{4,2}} & {{\rm{\Delta }}}_{\mathrm{4,3}} & {\lambda }_{1}{\psi }_{1,n}^{\left(3\right)}+{\psi }_{1,n}^{\left(2\right)} & {\lambda }_{1}^{3}{\psi }_{1,n}^{\left(3\right)}+3{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(2\right)}+3{\lambda }_{1}{\psi }_{1,n}^{\left(1\right)}+{\psi }_{1,n}^{\left(0\right)} & {{\rm{\Delta }}}_{\mathrm{4,6}}\\ {\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(4\right)}+2{\lambda }_{1}{\varphi }_{1,n}^{\left(3\right)}+{\varphi }_{1,n}^{\left(2\right)} & {{\rm{\Delta }}}_{\mathrm{5,2}} & {{\rm{\Delta }}}_{\mathrm{5,3}} & {\lambda }_{1}{\psi }_{1,n}^{\left(4\right)}+{\psi }_{1,n}^{\left(3\right)} & {\lambda }_{1}^{3}{\psi }_{1,n}^{\left(4\right)}+3{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(3\right)}+3{\lambda }_{1}{\psi }_{1,n}^{\left(2\right)}+{\psi }_{1,n}^{\left(1\right)} & {{\rm{\Delta }}}_{\mathrm{5,6}}\\ {\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(5\right)}+2{\lambda }_{1}{\varphi }_{1,n}^{\left(4\right)}+{\varphi }_{1,n}^{\left(3\right)} & {{\rm{\Delta }}}_{\mathrm{6,2}} & {{\rm{\Delta }}}_{\mathrm{6,3}} & {\lambda }_{1}{\psi }_{1,n}^{\left(5\right)}+{\psi }_{1,n}^{\left(4\right)} & {\lambda }_{1}^{3}{\psi }_{1,n}^{\left(5\right)}+3{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(4\right)}+3{\lambda }_{1}{\psi }_{1,n}^{\left(3\right)}+{\psi }_{1,n}^{\left(2\right)} & {{\rm{\Delta }}}_{\mathrm{6,6}}\end{array}\right| \end{array}, $
$\begin{array}{rcl}{{\rm{\Delta }}}_{2,n} & = & \left|\begin{array}{cccccc}{\lambda }_{1}{\varphi }_{1,n}^{\left(0\right)}-\displaystyle \frac{1}{\alpha }{\psi }_{1,n}^{\left(0\right)} & {\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(0\right)} & {\lambda }_{1}^{5}{\varphi }_{1,n}^{\left(0\right)} & {\lambda }_{1}^{2}{\psi }_{1,n}^{\left(0\right)} & {\lambda }_{1}^{4}{\psi }_{1,n}^{\left(0\right)} & {\lambda }_{1}^{6}{\psi }_{1,n}^{\left(0\right)}\\ {\lambda }_{1}{\varphi }_{1,n}^{\left(1\right)}+{\varphi }_{1,n}^{\left(0\right)}-\displaystyle \frac{1}{\alpha }{\psi }_{1,n}^{\left(1\right)} & {\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(1\right)}+3{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(0\right)} & {{\rm{\Lambda }}}_{\mathrm{2,3}} & {\lambda }_{1}^{2}{\psi }_{1,n}^{\left(1\right)}+2{\lambda }_{1}{\psi }_{1,n}^{\left(0\right)} & {{\rm{\Lambda }}}_{\mathrm{2,5}} & {{\rm{\Lambda }}}_{\mathrm{2,6}}\\ {\lambda }_{1}{\varphi }_{1,n}^{\left(2\right)}+{\varphi }_{1,n}^{\left(1\right)}-\displaystyle \frac{1}{\alpha }{\psi }_{1,n}^{\left(2\right)} & {\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(2\right)}+3{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(1\right)}+3{\lambda }_{1}{\varphi }_{1,n}^{\left(0\right)} & {{\rm{\Lambda }}}_{\mathrm{3,3}} & {\lambda }_{1}^{2}{\psi }_{1,n}^{\left(2\right)}+2{\lambda }_{1}{\psi }_{1,n}^{\left(1\right)}+{\psi }_{1,n}^{\left(0\right)} & {{\rm{\Lambda }}}_{\mathrm{3,5}} & {{\rm{\Lambda }}}_{\mathrm{3,6}}\\ {\lambda }_{1}{\varphi }_{1,n}^{\left(3\right)}+{\varphi }_{1,n}^{\left(2\right)}-\displaystyle \frac{1}{\alpha }{\psi }_{1,n}^{\left(3\right)} & {\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(3\right)}+3{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(2\right)}+3{\lambda }_{1}{\varphi }_{1,n}^{\left(1\right)}+{\varphi }_{1,n}^{\left(0\right)} & {{\rm{\Lambda }}}_{\mathrm{4,3}} & {\lambda }_{1}^{2}{\psi }_{1,n}^{\left(3\right)}+2{\lambda }_{1}{\psi }_{1,n}^{\left(2\right)}+{\psi }_{1,n}^{\left(1\right)} & {{\rm{\Lambda }}}_{\mathrm{4,5}} & {{\rm{\Lambda }}}_{\mathrm{4,6}}\\ {\lambda }_{1}{\varphi }_{1,n}^{\left(4\right)}+{\varphi }_{1,n}^{\left(3\right)}-\displaystyle \frac{1}{\alpha }{\psi }_{1,n}^{\left(4\right)} & {\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(4\right)}+3{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(3\right)}+3{\lambda }_{1}{\varphi }_{1,n}^{\left(2\right)}+{\varphi }_{1,n}^{\left(1\right)} & {{\rm{\Lambda }}}_{\mathrm{5,3}} & {\lambda }_{1}^{2}{\psi }_{1,n}^{\left(4\right)}+2{\lambda }_{1}{\psi }_{1,n}^{\left(3\right)}+{\psi }_{1,n}^{\left(2\right)} & {{\rm{\Lambda }}}_{\mathrm{5,5}} & {{\rm{\Lambda }}}_{\mathrm{5,6}}\\ {\lambda }_{1}{\varphi }_{1,n}^{\left(5\right)}+{\varphi }_{1,n}^{\left(4\right)}-\displaystyle \frac{1}{\alpha }{\psi }_{1,n}^{\left(5\right)} & {\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(5\right)}+3{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(4\right)}+3{\lambda }_{1}{\varphi }_{1,n}^{\left(3\right)}+{\varphi }_{1,n}^{\left(2\right)} & {{\rm{\Lambda }}}_{\mathrm{6,3}} & {\lambda }_{1}^{2}{\psi }_{1,n}^{\left(5\right)}+2{\lambda }_{1}{\psi }_{1,n}^{\left(4\right)}+{\psi }_{1,n}^{\left(3\right)} & {{\rm{\Lambda }}}_{\mathrm{6,5}} & {{\rm{\Lambda }}}_{\mathrm{6,6}}\end{array}\right|,\end{array}$
in which
$\begin{eqnarray*}\begin{array}{l}{{\rm{\Delta }}}_{\mathrm{2,2}}={\lambda }_{1}^{4}{\varphi }_{1,n}^{\left(1\right)}+\,4{\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(0\right)},{{\rm{\Delta }}}_{\mathrm{3,2}}\\ \ ={\lambda }_{1}^{4}{\varphi }_{1,n}^{\left(2\right)}+4{\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(1\right)}\\ \ +\,6{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(0\right)},{{\rm{\Delta }}}_{\mathrm{4,2}}={\lambda }_{1}^{4}{\varphi }_{1,n}^{\left(3\right)}\\ +4{\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(2\right)}+6{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(1\right)}+4{\lambda }_{1}{\varphi }_{1,n}^{\left(0\right)},\\ {{\rm{\Delta }}}_{\mathrm{5,2}}={\lambda }_{1}^{4}{\varphi }_{1,n}^{\left(4\right)}+4{\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(3\right)}+6{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(2\right)}+4{\lambda }_{1}{\varphi }_{1,n}^{\left(1\right)}+{\varphi }_{1,n}^{\left(0\right)},\\ \ \,{{\rm{\Delta }}}_{\mathrm{6,2}}={\lambda }_{1}^{4}{\varphi }_{1,n}^{\left(5\right)}+4{\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(4\right)}+6{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(3\right)}+4{\lambda }_{1}{\varphi }_{1,n}^{\left(2\right)}+{\varphi }_{1,n}^{\left(1\right)},\\ {{\rm{\Delta }}}_{\mathrm{2,3}}={\lambda }_{1}^{6}{\varphi }_{1,n}^{\left(1\right)}+6{\lambda }_{1}^{5}{\varphi }_{1,n}^{\left(0\right)},{{\rm{\Delta }}}_{\mathrm{3,3}}={\lambda }_{1}^{6}{\varphi }_{1,n}^{\left(2\right)}+6{\lambda }_{1}^{5}{\varphi }_{1,n}^{\left(1\right)}\\ \ +\,15{\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(0\right)},{{\rm{\Delta }}}_{\mathrm{4,3}}={\lambda }_{1}^{6}{\varphi }_{1,n}^{\left(3\right)}+6{\lambda }_{1}^{5}{\varphi }_{1,n}^{\left(2\right)}\\ \ +\,15{\lambda }_{1}^{4}{\varphi }_{1,n}^{\left(1\right)}+20{\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(0\right)},\\ {{\rm{\Delta }}}_{\mathrm{5,3}}={\lambda }_{1}^{6}{\varphi }_{1,n}^{\left(4\right)}+6{\lambda }_{1}^{5}{\varphi }_{1,n}^{\left(3\right)}\\ \ +\,15{\lambda }_{1}^{4}{\varphi }_{1,n}^{\left(2\right)}+20{\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(1\right)}+15{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(0\right)},\\ {{\rm{\Delta }}}_{\mathrm{6,3}}={\lambda }_{1}^{6}{\varphi }_{1,n}^{\left(5\right)}+6{\lambda }_{1}^{5}{\varphi }_{1,n}^{\left(4\right)}\\ \ +\,15{\lambda }_{1}^{4}{\varphi }_{1,n}^{\left(3\right)}+20{\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(2\right)}+15{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(1\right)}+6{\lambda }_{1}{\varphi }_{1,n}^{\left(0\right)},\\ {{\rm{\Delta }}}_{\mathrm{2,6}}={\lambda }_{1}^{5}{\psi }_{1,n}^{\left(1\right)}+5{\lambda }_{1}^{4}{\psi }_{1,n}^{\left(0\right)},{{\rm{\Delta }}}_{\mathrm{3,6}}={\lambda }_{1}^{5}{\psi }_{1,n}^{\left(2\right)}+5{\lambda }_{1}^{4}{\psi }_{1,n}^{\left(1\right)}\\ \ +\,10{\lambda }_{1}^{3}{\psi }_{1,n}^{\left(0\right)},{{\rm{\Delta }}}_{\mathrm{4,6}}={\lambda }_{1}^{5}{\psi }_{1,n}^{\left(3\right)}+5{\lambda }_{1}^{4}{\psi }_{1,n}^{\left(2\right)}\\ \ +\,10{\lambda }_{1}^{3}{\psi }_{1,n}^{\left(1\right)}+10{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(0\right)},\\ {{\rm{\Delta }}}_{\mathrm{5,6}}={\lambda }_{1}^{5}{\psi }_{1,n}^{\left(4\right)}+5{\lambda }_{1}^{4}{\psi }_{1,n}^{\left(3\right)}+10{\lambda }_{1}^{3}{\psi }_{1,n}^{\left(2\right)}\\ \ +\,10{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(1\right)}+5{\lambda }_{1}{\psi }_{1,n}^{\left(0\right)},\\ {{\rm{\Delta }}}_{\mathrm{6,6}}={\lambda }_{1}^{5}{\psi }_{1,n}^{\left(5\right)}+5{\lambda }_{1}^{4}{\psi }_{1,n}^{\left(4\right)}\\ \ +\,10{\lambda }_{1}^{3}{\psi }_{1,n}^{\left(3\right)}+10{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(2\right)}+5{\lambda }_{1}{\psi }_{1,n}^{\left(1\right)}+{\psi }_{1,n}^{\left(0\right)},\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{{\rm{\Lambda }}}_{\mathrm{2,3}}={\lambda }_{1}^{5}{\varphi }_{1,n}^{\left(1\right)}+5{\lambda }_{1}^{4}{\varphi }_{1,n}^{\left(0\right)},{{\rm{\Lambda }}}_{\mathrm{3,3}}={\lambda }_{1}^{5}{\varphi }_{1,n}^{\left(2\right)}\\ \ +\,5{\lambda }_{1}^{4}{\varphi }_{1,n}^{\left(1\right)}+10{\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(0\right)},{{\rm{\Lambda }}}_{\mathrm{4,3}}\\ ={\lambda }_{1}^{5}{\varphi }_{1,n}^{\left(3\right)}+5{\lambda }_{1}^{4}{\varphi }_{1,n}^{\left(2\right)}\\ \ +\,10{\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(1\right)}+10{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(0\right)},\\ {{\rm{\Lambda }}}_{\mathrm{5,3}}={\lambda }_{1}^{5}{\varphi }_{1,n}^{\left(4\right)}+5{\lambda }_{1}^{4}{\varphi }_{1,n}^{\left(3\right)}+10{\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(2\right)}\\ \ +\,10{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(1\right)}+5{\lambda }_{1}{\varphi }_{1,n}^{\left(0\right)},\\ {{\rm{\Lambda }}}_{\mathrm{6,3}}={\lambda }_{1}^{5}{\varphi }_{1,n}^{\left(5\right)}+5{\lambda }_{1}^{4}{\varphi }_{1,n}^{\left(4\right)}+10{\lambda }_{1}^{3}{\varphi }_{1,n}^{\left(3\right)}\\ \ +\,10{\lambda }_{1}^{2}{\varphi }_{1,n}^{\left(2\right)}+5{\lambda }_{1}{\varphi }_{1,n}^{\left(1\right)}+{\varphi }_{1,n}^{\left(0\right)},\\ {{\rm{\Lambda }}}_{\mathrm{2,5}}={\lambda }_{1}^{4}{\psi }_{1,n}^{\left(1\right)}+4{\lambda }_{1}^{3}{\psi }_{1,n}^{\left(0\right)},{{\rm{\Lambda }}}_{\mathrm{3,5}}={\lambda }_{1}^{4}{\psi }_{1,n}^{\left(2\right)}+4{\lambda }_{1}^{3}{\psi }_{1,n}^{\left(1\right)}\\ \ +\,6{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(0\right)},{{\rm{\Lambda }}}_{\mathrm{4,5}}={\lambda }_{1}^{4}{\psi }_{1,n}^{\left(3\right)}+4{\lambda }_{1}^{3}{\psi }_{1,n}^{\left(2\right)}\\ \ +\,6{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(1\right)}+4{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(0\right)},\\ {{\rm{\Lambda }}}_{\mathrm{5,5}}={\lambda }_{1}^{4}{\psi }_{1,n}^{\left(4\right)}+4{\lambda }_{1}^{3}{\psi }_{1,n}^{\left(3\right)}+6{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(2\right)}+4{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(1\right)}\\ \ +\,{\psi }_{1,n}^{\left(0\right)},{{\rm{\Lambda }}}_{\mathrm{6,5}}={\lambda }_{1}^{4}{\psi }_{1,n}^{\left(5\right)}+4{\lambda }_{1}^{3}{\psi }_{1,n}^{\left(4\right)}\\ \ +\,6{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(3\right)}+4{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(2\right)}+{\psi }_{1,n}^{\left(1\right)},\\ {{\rm{\Lambda }}}_{\mathrm{2,6}}={\lambda }_{1}^{6}{\psi }_{1,n}^{\left(1\right)}+6{\lambda }_{1}^{5}{\psi }_{1,n}^{\left(0\right)},{{\rm{\Lambda }}}_{\mathrm{3,6}}={\lambda }_{1}^{6}{\psi }_{1,n}^{\left(2\right)}+6{\lambda }_{1}^{5}{\psi }_{1,n}^{\left(1\right)}\\ \ +\,15{\lambda }_{1}^{4}{\psi }_{1,n}^{\left(0\right)},{{\rm{\Lambda }}}_{\mathrm{4,6}}={\lambda }_{1}^{6}{\psi }_{1,n}^{\left(3\right)}+6{\lambda }_{1}^{5}{\psi }_{1,n}^{\left(2\right)}\\ \ +\,15{\lambda }_{1}^{4}{\psi }_{1,n}^{\left(1\right)}+20{\lambda }_{1}^{3}{\psi }_{1,n}^{\left(0\right)},\\ {{\rm{\Lambda }}}_{\mathrm{5,6}}={\lambda }_{1}^{6}{\psi }_{1,n}^{\left(4\right)}+6{\lambda }_{1}^{5}{\psi }_{1,n}^{\left(3\right)}+15{\lambda }_{1}^{4}{\psi }_{1,n}^{\left(2\right)}\\ \ +\,20{\lambda }_{1}^{3}{\psi }_{1,n}^{\left(1\right)}+15{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(0\right)},\\ {{\rm{\Lambda }}}_{\mathrm{6,6}}={\lambda }_{1}^{6}{\psi }_{1,n}^{\left(5\right)}+6{\lambda }_{1}^{5}{\psi }_{1,n}^{\left(4\right)}+15{\lambda }_{1}^{4}{\psi }_{1,n}^{\left(3\right)}\\ \ +\,20{\lambda }_{1}^{3}{\psi }_{1,n}^{\left(2\right)}+15{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(1\right)}+6{\lambda }_{1}^{2}{\psi }_{1,n}^{\left(0\right)}.\end{array}\end{eqnarray*}$
whereas ${\rm{\Delta }}{f}_{n}^{\left(6\right)}$ and ${\rm{\Delta }}{g}_{n}^{\left(1\right)}$ are produced from Δ1 by replacing its third and fourth columns with $(-{\varphi }_{1,n}^{\left(0\right)},-{\varphi }_{1,n}^{\left(1\right)}$, $-{\varphi }_{1,n}^{\left(2\right)},-{\varphi }_{1,n}^{\left(3\right)}$, ${\left.-{\varphi }_{1,n}^{\left(4\right)},-{\varphi }_{1,n}^{\left(5\right)}\right)}^{{\rm{T}}}$, and ${\rm{\Delta }}{r}_{n}^{\left(1\right)}$ is given from Δ2 by replacing its first column with $(-{\psi }_{1,n}^{\left(0\right)}$, $-{\psi }_{1,n}^{\left(1\right)},-{\psi }_{1,n}^{\left(2\right)}$, $-{\psi }_{1,n}^{\left(3\right)}$, ${\left.-{\psi }_{1,n}^{\left(4\right)},-{\psi }_{1,n}^{\left(5\right)}\right)}^{{\rm{T}}}$.
Table 1. Main mathematical features of rational solutions an and bn of order j. |
j | HPN(an) | HPD(an) | HPN(bn) | HPD(bn) | Background(an) | Background(bn) |
1 | 2 | 2 | 0 | 2 | 1 | 0 |
2 | 12 | 12 | 10 | 12 | 1 | 0 |
3 | 30 | 30 | 28 | 30 | 1 | 0 |
⋯ | ⋯ | ⋯ | ⋯ | ⋯ | ⋯ | ⋯ |
j | 2j(2j − 1) | 2j(2j − 1) | 2j(2j − 1) − 2 | 2j(2j − 1) | 1 | 0 |
Table 2. Main mathematical features of rational solutions an and bn of order j. |
j | HPN(an) | HPD(an) | HPN(bn) | HPD(bn) | Background(an) | Background(bn) |
1 | 6 | 6 | 4 | 6 | 1 | 0 |
2 | 20 | 20 | 18 | 20 | 1 | 0 |
3 | 42 | 42 | 40 | 42 | 1 | 0 |
⋯ | ⋯ | ⋯ | ⋯ | ⋯ | ⋯ | ⋯ |
j | 2j(2j + 1) | 2j(2j + 1) | 2j(2j + 1) − 2 | 2j(2j + 1) | 1 | 0 |
5.3. Mixed solutions via the discrete generalized (2, 2N − 2)-fold DT
where ${g}_{n}^{\left(1\right)}$, ${r}_{n}^{\left(1\right)}$, ${f}_{n-1}^{\left(4\right)}$ and ${f}_{n}^{\left(4\right)}$ can be given by
with
where ${\varphi }_{1,n}^{\left(0\right)},$ ${\psi }_{1,n}^{\left(0\right)},$ ${\varphi }_{1,n}^{\left(1\right)},$ ${\psi }_{1,n}^{\left(1\right)},$ ${\varphi }_{1,n}^{\left(2\right)},$ ${\psi }_{1,n}^{\left(2\right)}$ are the same as ones in the previous subsection when i = 1, 2. The analytical expressions of solutions (
The mixed solutions (
6. Dynamical behaviors of soliton solutions
Figure 7. (Color online) One-soliton solutions ( |
Figure 8. (Color online) Two-soliton solution ( |
Figure 9. (Color online) Three-soliton solutions ( |