Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Adaptive input-to-state stable synchronization for uncertain time-delay Lur'e systems

  • Zhi Zhang(章枝) 1 ,
  • Zhilian Yan(闫志莲) , 2, * ,
  • Jianping Zhou(周建平) 1, 3, 4 ,
  • Yebin Chen(陈业斌) 1
Expand
  • 1School of Computer Science & Technology, Anhui University of Technology, Ma'anshan 243032, China
  • 2College of Electrical Engineering & Automation, Shandong University of Science and Technology, Qingdao 266590, China
  • 3Research Institute of Information Technology, Anhui University of Technology, Ma'anshan 243000, China
  • 4Anhui Province Key Laboratory of Special Heavy Load Robot, Anhui University of Technology, Ma'anshan 243032, China

*Author to whom any correspondence should be addressed.

Received date: 2021-02-22

  Revised date: 2021-04-07

  Accepted date: 2021-05-17

  Online published: 2021-08-11

Copyright

© 2021 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

This paper is dedicated to the study of adaptive input-to-state stable synchronization of uncertain time-delay Lur'e systems with exterior interference. With the help of the Lyapunov function approach, a sufficient condition for the input-to-state stability of the synchronization-error system is derived, which is theoretically less conservative than a previously reported criterion in the absence of parameter uncertainties. On the basis of the present condition, a co-design of the feedback gain and estimates of the uncertain parameters is given to determine the desired adaptive synchronization controller. Finally, an example with simulations is provided to demonstrate the applicability and superiority of the analysis and design strategies.

Cite this article

Zhi Zhang(章枝) , Zhilian Yan(闫志莲) , Jianping Zhou(周建平) , Yebin Chen(陈业斌) . Adaptive input-to-state stable synchronization for uncertain time-delay Lur'e systems[J]. Communications in Theoretical Physics, 2021 , 73(8) : 085003 . DOI: 10.1088/1572-9494/ac01dc

1. Introduction

Lur'e systems are a class of typical nonlinear dynamic systems that include a number of different chaotic models, such as Chua's circuits, Hopfield neural networks, Lorenz systems, and genetic oscillators, as their special cases. Over the past few decades, synchronization of Lur'e systems without and with time-delay has attracted increasing attention from researchers in various disciplines owing to their applications in image encryption as well as secure communication [1, 2]. Corresponding, plenty of research results regarding the synchronization of Lur'e systems have been proposed in the literature; see, e.g. [3-7] and the references therein.
An actual dynamic system inevitably suffers from exterior interference of varying degrees, which may have a great influence on the synchronization behaviors. Considering that the existing interference is bounded in most cases, it is of necessity to make sure that the state of the synchronization-error system (SES) is also bounded. This issue, called the input-to-state stable (ISS) synchronization problem [8-11], has drawn the interest of researchers in the control community. Nevertheless, it seems that there are few results available on ISS synchronization of time-delay Lur'e systems despite their importance.
On the other hand, structure and parameter uncertainties often exist owing to modeling errors. It is often the case that one has very little information on the bound of these uncertainties, which had led in the past decades to a focus on the adaptive control scheme, with the belief that such a control scheme not only is easy to be implemented, but also can relatively smoothly and accurately track the system trajectory during normal operation [12]. For time-delay Lur'e systems, although the adaptive control approach has been considered in [13-15], how to use it to achieve ISS synchronization of uncertain time-delay Lur'e systems with exterior interference is still unclear and deserves further detailed investigation.
In this paper, we attempt to study the issue of adaptive ISS synchronization for uncertain time-delay Lur'e systems with exterior interference. The main contributions of our work are twofold:

A sufficient condition on the ISS of the SES is derived with the help of the Lyapunov function approach. It is theoretically less conservative than the criterion presented in [16] when there are no parameter uncertainties in the Lur'e system;

A co-design of the feedback gain and estimates of the uncertain parameters is given to determine the desired adaptive synchronization controller. It depends on the feasibility of few linear matrix inequalities (LMIs) and, therefore, is numerically tractable.

Notation: let us use ${{\mathbb{R}}}^{m}$, ${{\mathbb{R}}}^{+}$, ${{\mathbb{S}}}_{+}^{m}$, and ${{\mathbb{R}}}^{m\times l}$ to denote the m-dimensional Euclidean space equipped with the Euclidean norm $\parallel \cdot \parallel $, the space of nonnegative real numbers, the space of m-dimensional positive-definite real matrices, and the set of all m × l real matrices, respectively; use ${\mathscr{C}}\left({\rm{\Omega }},{{\mathbb{R}}}^{n}\right)$ to denote the family of all continuous ${{\mathbb{R}}}^{n}$-valued functions on set Ω; use λM(P), λm(P), and PT to stand for the largest eigenvalue, the smallest eigenvalue, and the transpose of a matrix P, respectively; and denote further by ${\mathfrak{H}}e(M)$ the sum of M and MT. Moreover, define $\gamma (\rho ):{{\mathbb{R}}}^{+}\to {{\mathbb{R}}}^{+}$ as a ${\mathscr{K}}$ function provided that the function is not only continuous and strictly nondecreasing, but also satisfies γ(0) = 0.

2. Preliminaries

Consider a type of Lur'e system modeled as
$\begin{eqnarray}\left\{\begin{array}{l}{\dot{\zeta }}_{1}(t)={ \mathcal A }{\zeta }_{1}(t)+{{ \mathcal A }}_{\delta }{\zeta }_{1}(t-\delta )+{ \mathcal B }F\left({ \mathcal H }{\zeta }_{1}(t)\right)\\ +{{ \mathcal B }}_{\delta }G\left({ \mathcal H }{\zeta }_{1}(t-\delta )\right)\\ +\sum _{j=1}^{p}{{\rm{\Phi }}}_{j}({\zeta }_{1}(t)){\phi }_{j}+\sum _{j=1}^{q}{{\rm{\Psi }}}_{j}({\zeta }_{1}(t-\delta )){\psi }_{j}+{{ \mathcal E }}_{1}\omega (t)\\ {\eta }_{1}(t)={ \mathcal C }{\zeta }_{1}(t),\end{array}\right.\end{eqnarray}$
where ${\zeta }_{1}(t)\in {{\mathbb{R}}}^{m}$ represents the state vector; ${\eta }_{1}(t)\in {{\mathbb{R}}}^{n}$ represents the output vector; $\omega (t)\in {{\mathbb{R}}}^{l}$ represents the exterior interference; $F(\cdot )={[\begin{array}{ccc}{F}_{1}(\cdot ) & \cdots & {F}_{m}(\cdot )\end{array}]}^{{\rm{T}}}$, $G(\cdot )={[\begin{array}{c}{G}_{1}(\cdot )\cdots {G}_{m}(\cdot )\end{array}]}^{{\rm{T}}}$, Øj(∙), ${{\rm{\Psi }}}_{j}(\cdot )\in {\mathscr{C}}({{\mathbb{R}}}^{n},{{\mathbb{R}}}^{n})$ are continuous nonlinear vector functions; ${ \mathcal A }$, ${{ \mathcal A }}_{\delta }$, ${ \mathcal B }$, ${{ \mathcal B }}_{\delta }$, ${ \mathcal C }$, ${{ \mathcal E }}_{1}$, and ${ \mathcal H }$ are the system parameter matrices; Øj, ${\psi }_{j}\in {\mathbb{R}}$ denote uncertain parameters; δ > 0 stands for a time-delay.

Lur'e system is a common type of nonlinear system formed by a linear time-invariant system and a feedback loop involving nonlinear dynamics. Such systems are capable of generating strange chaotic attractors and, thus, of great application potential in image encryption and secure communication. It is worthy to point out that the Lur'e system model considered herein includes many famous chaotic models, such as the Lorenz systems, Chua's circuits, and chaotic Hopfield neural networks as its special cases.

In the past decades, chaotic synchronization has aroused great interest in various fields. The existing schemes of synchronization can be roughly divided into two types: the coupled synchronization [17-19] and drive-response (or master-slave) synchronization [20-22]. In this paper, the drive-response scheme will be utilized. Let us set (1) as a drive (master) system and then set the following as the corresponding response (slave) system:
$\begin{eqnarray}\left\{\begin{array}{l}{\dot{\zeta }}_{2}(t)={ \mathcal A }{\zeta }_{2}(t)+{{ \mathcal A }}_{\delta }{\zeta }_{2}(t-\delta )+{ \mathcal B }F\left({ \mathcal H }{\zeta }_{2}(t)\right)\\ +\ {{ \mathcal B }}_{\delta }G\left({ \mathcal H }{\zeta }_{2}(t-\delta )\right)\\ +u(t)+{{ \mathcal E }}_{2}\omega (t)\\ {\eta }_{2}(t)={ \mathcal C }{\zeta }_{2}(t),\end{array}\right.\end{eqnarray}$
in which ${\zeta }_{2}(t)\in {{\mathbb{R}}}^{m}$, $u(t)\in {{\mathbb{R}}}^{m}$, and ${\eta }_{2}(t)\in {{\mathbb{R}}}^{n}$ stand for the state, input, and output vectors, respectively; ${{ \mathcal E }}_{2}\in {{\mathbb{R}}}^{n\times l}$ is a constant matrix.
Define (t) = ζ2(t) − ζ1(t). Then we are able to establish the following SES:
$\begin{eqnarray}\displaystyle \begin{array}{rcl}\dot{\epsilon }(t) & = & { \mathcal A }\epsilon (t)+{{ \mathcal A }}_{\delta }\epsilon (t-\delta )\\ & & +\ { \mathcal B }f\left({ \mathcal H }\epsilon (t)\right)+{{ \mathcal B }}_{\delta }g\left({ \mathcal H }\epsilon (t-\delta )\right)\\ & & +u(t)-\sum _{j=1}^{p}{{\rm{\Phi }}}_{j}({\zeta }_{1}(t)){\phi }_{j}\\ & & -\ \sum _{j=1}^{q}{{\rm{\Psi }}}_{j}({\zeta }_{1}(t-\delta )){\psi }_{j}+{ \mathcal E }\omega (t),\end{array}\end{eqnarray}$
in which
$\begin{eqnarray*}\begin{array}{rcl}f\left({ \mathcal H }\epsilon (t)\right) & = & F\left({ \mathcal H }\left(\epsilon (t)+{\zeta }_{1}(t)\right)\right)\\ & & -\ F({ \mathcal H }{\zeta }_{1}(t)),{ \mathcal E }={{ \mathcal E }}_{2}-{{ \mathcal E }}_{1},\\ g\left({ \mathcal H }\epsilon (t-\delta )\right) & = & G\left({ \mathcal H }\left(\epsilon (t-\delta )+{\zeta }_{1}(t-\delta )\right)\right)\\ & & -G({ \mathcal H }{\zeta }_{1}(t-\delta )).\end{array}\end{eqnarray*}$
In the paper, the adaptive control approach will be adopted. The form of the controller is as follows:
$\begin{eqnarray}\displaystyle \begin{array}{rcl}u(t) & = & K\eta (t)+\sum _{j=1}^{p}{{\rm{\Phi }}}_{j}({\zeta }_{1}(t)){\breve{\phi }}_{j}(t)\\ & & +\sum _{j=1}^{q}{{\rm{\Psi }}}_{j}({\zeta }_{1}(t-\delta )){\breve{\psi }}_{j}(t),\end{array}\end{eqnarray}$
in which η(t) = η2(t) − η1(t), K is the controller gain, and ${\breve{\phi }}_{j}(t)$ and ${\breve{\psi }}_{j}(t)$ are the estimates of Øj and ψj, respectively.

In order to achieve synchronization of Lur'e systems, a lot of control strategies including the PD control [6], the adaptive control [13-15], the sampled-state feedback control [23], the time-delayed feedback control [24], the output-feedback control [25], and the sliding mode control [26] etc, have been utilized. Among these control strategies, the adaptive control method not only is easy to be implemented, but also can relatively smoothly and accurately track the system trajectory during normal operation [12]. When the drive system under consideration is subject to structure and parameter uncertainties, such a control method serves as an ideal candidate.

Substituting (4) into (3), one has
$\begin{eqnarray}\displaystyle \begin{array}{rcl}\dot{\epsilon }(t) & = & \left({ \mathcal A }+K{ \mathcal C }\right)\epsilon (t)+{{ \mathcal A }}_{\delta }\epsilon (t-\delta )\\ & & +\ { \mathcal B }f\left({ \mathcal H }\epsilon (t)\right)+{{ \mathcal B }}_{\delta }g\left({ \mathcal H }\epsilon (t-\delta )\right)\\ & & +\sum _{j=1}^{p}{{\rm{\Phi }}}_{j}({\zeta }_{1}(t))\left({\breve{\phi }}_{j}(t)-{\phi }_{j}\right)\\ & & +\sum _{j=1}^{q}{{\rm{\Psi }}}_{j}({\zeta }_{1}(t-\delta ))\left({\breve{\psi }}_{j}(t)-{\psi }_{j}\right)\\ & & +{ \mathcal E }\omega (t).\end{array}\end{eqnarray}$
In what follows we give the definitions of ISS and ISS synchronization:

Suppose that there are a ${\mathscr{K}}$ function γ(ρ) and a strictly decreasing function β(t) that converges to 0 as $t\to \infty $. Then, system (5) is called to be ISS if

$\begin{eqnarray}\parallel \epsilon (t)\parallel \leqslant \beta \left(t\right)+\gamma \left(\mathop{\sup }\limits_{0\leqslant \rho \leqslant t}\parallel \omega (\rho )\parallel \right)\end{eqnarray}$
holds for each t ≥ 0.

Systems (1) and (2) are said to be ISS synchronized if their SES (5) is ISS.

In a physical system, exterior interference is usually unavoidable, which is able to make the system oscillating, unstable or difficult to synchronize. Generally, the interference is not known a priori but is bounded in most cases. It can be observed from definition 1 that the ISS means that the system not only has bounded state under any bounded interference input but also is Lyapunov asymptotically stable in the absence of the interference. Thus the ISS may serve as a bridge among the input−output stability and the Lyapunov stability [27]. Especially, if $\beta \left(t\right)$ is chosen to be $\beta {{\rm{e}}}^{-\varepsilon t}$ [28], where β and ϵ are positive constants, then the ISS implies the exponential stability for the zero interference input case. Therefore, it is of great significance to study the ISS synchronization problem of Lur'e systems with exterior interference.

In this paper, the aim is to give a design of a adaptive controller in the form of (4) to make sure that the drive and response systems (1) and (2) to be ISS synchronized.
To accomplish the aim, let us introduce the following assumption, which is frequently applied in the literature [29-33]:

Functions ${F}_{1}(\cdot ),\cdots ,{F}_{m}(\cdot )$, ${G}_{1}(\cdot ),\cdots ,$ and ${G}_{m}(\cdot )$ are global Lipschitz continuous; that is, there exist constants ${L}_{{fi}}\geqslant 0$ and ${L}_{{gj}}\geqslant 0$, $i=1,\cdots ,m$, $j=1,\cdots ,m$ such that

$\begin{eqnarray*}\begin{array}{l}\left|{F}_{i}(\alpha )-{F}_{i}(\beta )\right|\leqslant {L}_{{fi}}\left|\alpha -\beta \right|,\\ \left|{G}_{j}(\alpha )-{G}_{j}(\beta )\right|\leqslant {L}_{{gj}}\left|\alpha -\beta \right|,\end{array}\end{eqnarray*}$
for any α, $\beta \in {\mathbb{R}}$.

Besides, we prepare two necessary lemmas, where the proof of lemma 2 is not difficult and is omitted herein for brevity:

[34] Given real matrices P and Q of suitable size, for any real constant θ > 0 we have

$\begin{eqnarray*}{\mathfrak{H}}e\left({P}^{{\rm{T}}}Q\right)\leqslant {\theta }^{-1}{P}^{{\rm{T}}}P+\theta {Q}^{{\rm{T}}}Q.\end{eqnarray*}$

For any $\omega (\rho )\in {\mathscr{C}}\left([a,b],{{\mathbb{R}}}^{n}\right)$ (a, $b\in {\mathbb{R}})$, the following equality holds true:

$\begin{eqnarray*}\mathop{\sup }\limits_{\rho \in [a,b]}{\parallel \omega (\rho )\parallel }^{2}={\left(\mathop{\sup }\limits_{\rho \in [a,b]}\parallel \omega (\rho )\parallel \right)}^{2}.\end{eqnarray*}$

3. Main results

This section is focused on the ISS analysis and the corresponding adaptive synchronization controller design. The following criterion regarding the ISS analysis of the SES in (5) can be established:

Suppose that there are scalars θ1 > 0, θ2 > 0, and matrices P, Q, R, $S\in {{\mathbb{S}}}_{+}^{n}$ such that

$\begin{eqnarray}\left[\begin{array}{ccccc}{{\rm{\Xi }}}_{1} & P{{ \mathcal A }}_{\delta } & P{ \mathcal E } & P{ \mathcal B } & P{{ \mathcal B }}_{\delta }\\ * & {\theta }_{2}{{ \mathcal H }}^{{\rm{T}}}{L}_{g}^{{\rm{T}}}{L}_{g}{ \mathcal H }-Q & 0 & 0 & 0\\ * & * & -R & 0 & 0\\ * & * & * & -{\theta }_{1}I & 0\\ * & * & * & * & -{\theta }_{2}I\end{array}\right]\lt 0,\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}{{\rm{\Xi }}}_{1} & = & {\mathfrak{H}}e\left(P({ \mathcal A }+K{ \mathcal C })\right)+{\theta }_{1}{{ \mathcal H }}^{{\rm{T}}}{L}_{f}^{{\rm{T}}}{L}_{f}{ \mathcal H }+Q+S,\\ {L}_{f} & = & {\rm{diag}}\left\{{L}_{f1},\cdots ,{L}_{{\rm{fm}}}\right\},\\ {L}_{g} & = & {\rm{diag}}\left\{{L}_{g1},\cdots ,{L}_{{\rm{gm}}}\right\}.\end{array}\end{eqnarray*}$
Then, system (5) is ISS if
$\begin{eqnarray}{\mathop{\breve{\phi }}\limits^{\cdot }}_{j}(t)=-(1+2\varepsilon ){\breve{\phi }}_{j}(t)-\mu {{\rm{\Phi }}}_{j}^{{\rm{T}}}({\zeta }_{1}(t))P\epsilon (t)+(1+2\varepsilon ){\phi }_{j},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\mathop{\breve{\psi }}\limits^{\cdot }}_{j}(t) & = & -(1+2\varepsilon ){\breve{\psi }}_{j}(t)-\nu {{\rm{\Psi }}}_{j}^{{\rm{T}}}({\zeta }_{1}(t-\delta ))P\epsilon (t)\\ & & +\ (1+2\varepsilon ){\psi }_{j},\end{array}\end{eqnarray}$
where $\varepsilon $ is a scalar satisfying
$\begin{eqnarray}2\varepsilon {\lambda }_{M}(P)+({{\rm{e}}}^{2\varepsilon \delta }-1){\lambda }_{M}(Q)-{\lambda }_{m}(S)\leqslant 0,\end{eqnarray}$
and $\mu $, ν are any positive scalars.

Proof. Let us select a Lyapunov function as
$\begin{eqnarray}\begin{array}{rcl}V(t) & = & {\epsilon }^{{\rm{T}}}(t)P\epsilon (t)+{\int }_{t-\delta }^{t}{\epsilon }^{{\rm{T}}}(\rho )Q\epsilon (\rho ){\rm{d}}\rho \\ & & +\ {\mu }^{-1}\displaystyle \sum _{j=1}^{p}{\left({\breve{\phi }}_{j}(t)-{\phi }_{j}\right)}^{2}\\ & & +\ {\nu }^{-1}\displaystyle \sum _{j=1}^{q}{\left({\breve{\psi }}_{j}(t)-{\psi }_{j}\right)}^{2}.\end{array}\end{eqnarray}$
We have along system (5) that
$\begin{eqnarray}\displaystyle \begin{array}{l}\dot{V}(t)=2{\epsilon }^{{\rm{T}}}(t)P\dot{\epsilon }(t)+{\epsilon }^{{\rm{T}}}(t)Q\epsilon (t)\\ -\,{\epsilon }^{{\rm{T}}}(t-\delta )Q\epsilon (t-\delta )+2{\mu }^{-1}\sum _{j=1}^{p}\left({\breve{\phi }}_{j}(t)-{\phi }_{j}\right){\mathop{\breve{\phi }}\limits^{\cdot }}_{j}(t)\\ +\,2{\nu }^{-1}\sum _{j=1}^{q}\left({\breve{\psi }}_{j}(t)-{\psi }_{j}\right){\mathop{\breve{\psi }}\limits^{\cdot }}_{j}(t)\\ =\,2{\epsilon }^{{\rm{T}}}(t)P({ \mathcal A }+K{ \mathcal C })\epsilon (t)+2{\epsilon }^{{\rm{T}}}(t)P{{ \mathcal A }}_{\delta }\epsilon (t-\delta )\\ +\,2{\epsilon }^{{\rm{T}}}(t)P{ \mathcal B }f\left({ \mathcal H }\epsilon (t)\right)+2{\epsilon }^{{\rm{T}}}(t)P{{ \mathcal B }}_{\delta }g\left({ \mathcal H }\epsilon (t-\delta )\right)\\ +\,2{\epsilon }^{{\rm{T}}}(t)P{ \mathcal E }\omega (t)+2\sum _{j=1}^{p}\left({\breve{\phi }}_{j}(t)-{\phi }_{j}\right){{\rm{\Phi }}}_{j}^{{\rm{T}}}({\zeta }_{1}(t))P\epsilon (t)\\ +\,2\sum _{j=1}^{q}\left({\breve{\psi }}_{j}(t)-{\psi }_{j}\right){{\rm{\Psi }}}_{j}^{{\rm{T}}}({\zeta }_{1}(t-\delta ))P\epsilon (t)+{\epsilon }^{{\rm{T}}}(t)Q\epsilon (t)\\ -\,{\epsilon }^{{\rm{T}}}(t-\delta )Q\epsilon (t-\delta )+2{\mu }^{-1}\sum _{j=1}^{p}\left({\breve{\phi }}_{j}(t)-{\phi }_{j}\right){\mathop{\breve{\phi }}\limits^{\cdot }}_{j}(t)\\ +\,2{\nu }^{-1}\sum _{j=1}^{q}\left({\breve{\psi }}_{j}(t)-{\psi }_{j}\right){\mathop{\breve{\psi }}\limits^{\cdot }}_{j}(t).\end{array}\end{eqnarray}$
With Assumption 1, the following inequalities hold true:
$\begin{eqnarray*}\begin{array}{l}{f}^{{\rm{T}}}\left({ \mathcal H }\epsilon (t)\right)f\left({ \mathcal H }\epsilon (t)\right)\leqslant {\epsilon }^{{\rm{T}}}(t){{ \mathcal H }}^{{\rm{T}}}{L}_{f}^{{\rm{T}}}{L}_{f}{ \mathcal H }\epsilon (t),\\ {g}^{{\rm{T}}}\left({ \mathcal H }\epsilon (t-\delta )\right)g\left({ \mathcal H }\epsilon (t-\delta )\right)\\ \leqslant {\epsilon }^{{\rm{T}}}(t-\delta ){{ \mathcal H }}^{{\rm{T}}}{L}_{g}^{{\rm{T}}}{L}_{g}{ \mathcal H }\epsilon (t-\delta ),\end{array}\end{eqnarray*}$
which together with lemma 1 result in
$\begin{eqnarray}\begin{array}{l}{\epsilon }^{{\rm{T}}}(t)P{ \mathcal B }f\left({ \mathcal H }\epsilon (t)\right)+{f}^{{\rm{T}}}\left({ \mathcal H }\epsilon (t)\right){{ \mathcal B }}^{{\rm{T}}}P\epsilon (t)\\ \leqslant \,\frac{1}{{\theta }_{1}}{\epsilon }^{{\rm{T}}}(t)P{ \mathcal B }{{ \mathcal B }}^{{\rm{T}}}P\epsilon (t)+{\theta }_{1}{f}^{{\rm{T}}}\left({ \mathcal H }\epsilon (t)\right)f\left({ \mathcal H }\epsilon (t)\right)\\ \leqslant \,{\epsilon }^{{\rm{T}}}(t)\left(\frac{1}{{\theta }_{1}}P{ \mathcal B }{{ \mathcal B }}^{{\rm{T}}}P+{\theta }_{1}{{ \mathcal H }}^{{\rm{T}}}{L}_{f}^{{\rm{T}}}{L}_{f}{ \mathcal H }\right)\epsilon (t),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\epsilon }^{{\rm{T}}}(t)P{{ \mathcal B }}_{\delta }g\left({ \mathcal H }\epsilon (t-\delta )\right)+{g}^{{\rm{T}}}\left({ \mathcal H }\epsilon (t-\delta )\right){{ \mathcal B }}_{\delta }^{{\rm{T}}}P\epsilon (t)\\ \leqslant \,\frac{1}{{\theta }_{2}}{\epsilon }^{{\rm{T}}}(t)P{{ \mathcal B }}_{\delta }{{ \mathcal B }}_{\delta }^{{\rm{T}}}P\epsilon (t)+{\theta }_{2}{g}^{{\rm{T}}}\left({ \mathcal H }\epsilon (t-\delta )\right)g\left({ \mathcal H }\epsilon (t-\delta )\right)\\ \leqslant \,\frac{1}{{\theta }_{2}}{\epsilon }^{{\rm{T}}}(t)P{{ \mathcal B }}_{\delta }{{ \mathcal B }}_{\delta }^{{\rm{T}}}P\epsilon (t)+{\theta }_{2}{\epsilon }^{{\rm{T}}}(t-\delta ){{ \mathcal H }}^{{\rm{T}}}{L}_{g}^{{\rm{T}}}{L}_{g}{ \mathcal H }\epsilon (t-\delta ).\end{array}\end{eqnarray}$
Noting (13) and (14), it follows from (12) that
$\begin{eqnarray}\begin{array}{l}\dot{V}(t)\leqslant {\left[\begin{array}{c}\epsilon (t)\\ \epsilon (t-\delta )\\ \omega (t)\end{array}\right]}^{{\rm{T}}}\left[\begin{array}{ccc}{{\rm{\Xi }}}_{2} & P{{ \mathcal A }}_{\delta } & P{ \mathcal E }\\ * & {\theta }_{2}{{ \mathcal H }}^{{\rm{T}}}{L}_{g}^{{\rm{T}}}{L}_{g}{ \mathcal H }-Q & 0\\ * & * & -R\end{array}\right]\\ \left[\begin{array}{c}\epsilon (t)\\ \epsilon (t-\delta )\\ \omega (t)\end{array}\right]-{\epsilon }^{{\rm{T}}}(t)S\epsilon (t)+{\omega }^{{\rm{T}}}(t)R\omega (t)\\ +\,2\displaystyle \sum _{j=1}^{p}\left({\breve{\phi }}_{j}(t)-{\phi }_{j}\right){{\rm{\Phi }}}_{j}^{{\rm{T}}}({\zeta }_{1}(t))P\epsilon (t)\\ +\,2\displaystyle \sum _{j=1}^{q}\left({\breve{\psi }}_{j}(t)-{\psi }_{j}\right){{\rm{\Psi }}}_{j}^{{\rm{T}}}({\zeta }_{1}(t-\delta ))P\epsilon (t)\\ +\,2{\mu }^{-1}\displaystyle \sum _{j=1}^{p}\left({\breve{\phi }}_{j}(t)-{\phi }_{j}\right){\mathop{\breve{\phi }}\limits^{\cdot }}_{j}(t)\\ +\,2{\nu }^{-1}\displaystyle \sum _{j=1}^{q}\left({\breve{\psi }}_{j}(t)-{\psi }_{j}\right){\mathop{\breve{\psi }}\limits^{\cdot }}_{j}(t),\end{array}\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}{{\rm{\Xi }}}_{2} & = & {\mathfrak{H}}e\left(P({ \mathcal A }+K{ \mathcal C })\right)+\frac{1}{{\theta }_{1}}P{ \mathcal B }{{ \mathcal B }}^{{\rm{T}}}P\\ & & +\ {\theta }_{1}{{ \mathcal H }}^{{\rm{T}}}{L}_{f}^{{\rm{T}}}{L}_{f}{ \mathcal H }+\frac{1}{{\theta }_{2}}P{{ \mathcal B }}_{\delta }{{ \mathcal B }}_{\delta }^{{\rm{T}}}P+Q+S.\end{array}\end{eqnarray*}$
According to Schur's complement, (7) ensures that
$\begin{eqnarray}\left[\begin{array}{ccc}{{\rm{\Xi }}}_{2} & P{{ \mathcal A }}_{\delta } & P{ \mathcal E }\\ * & {\theta }_{2}{{ \mathcal H }}^{{\rm{T}}}{L}_{g}^{{\rm{T}}}{L}_{g}{ \mathcal H }-Q & 0\\ * & * & -R\end{array}\right]\lt 0.\end{eqnarray}$
Using (8), (9), and (16), we have from (15) that
$\begin{eqnarray}\begin{array}{l}\dot{V}(t)\leqslant -{\epsilon }^{{\rm{T}}}(t)S\epsilon (t)+{\omega }^{{\rm{T}}}(t)R\omega (t)\\ -\,2(1+2\varepsilon ){\mu }^{-1}\displaystyle \sum _{j=1}^{p}{\left({\breve{\phi }}_{j}(t)-{\phi }_{j}\right)}^{2}\\ -\,2(1+2\varepsilon ){\nu }^{-1}\displaystyle \sum _{j=1}^{q}{\left({\breve{\psi }}_{j}(t)-{\psi }_{j}\right)}^{2}\\ \leqslant -{\epsilon }^{{\rm{T}}}(t)S\epsilon (t)+{\omega }^{{\rm{T}}}(t)R\omega (t)-4\varepsilon {\mu }^{-1}\displaystyle \sum _{j=1}^{p}\\ {\left({\breve{\phi }}_{j}(t)-{\phi }_{j}\right)}^{2}-4\varepsilon {\nu }^{-1}\displaystyle \sum _{j=1}^{q}{\left({\breve{\psi }}_{j}(t)-{\psi }_{j}\right)}^{2}.\end{array}\end{eqnarray}$
Deriving the derivative of e2ϵtV(t) and using (11) and (17), one gains
$\begin{eqnarray}\begin{array}{l}\frac{{\rm{d}}\left({{\rm{e}}}^{2\varepsilon t}V(t)\right)}{{dt}}=2\varepsilon {{\rm{e}}}^{2\varepsilon t}V(t)+{{\rm{e}}}^{2\varepsilon t}\dot{V}(t)\\ \leqslant \,2\varepsilon {{\rm{e}}}^{2\varepsilon t}{\epsilon }^{{\rm{T}}}(t)P\epsilon (t)+2\varepsilon {{\rm{e}}}^{2\varepsilon t}{\int }_{t-\delta }^{t}{\epsilon }^{{\rm{T}}}(\rho )Q\epsilon (\rho ){\rm{d}}\rho \\ -\,{{\rm{e}}}^{2\varepsilon t}{\epsilon }^{{\rm{T}}}(t)S\epsilon (t)+{{\rm{e}}}^{2\varepsilon t}{\omega }^{{\rm{T}}}(t)R\omega (t).\end{array}\end{eqnarray}$
By integrating both sides of (18) from 0 to t, one has
$\begin{eqnarray}\begin{array}{l}{{\rm{e}}}^{2\varepsilon t}V(t)-V(0)\leqslant {\int }_{0}^{t}2\varepsilon {{\rm{e}}}^{2\varepsilon r}{\epsilon }^{{\rm{T}}}(r)P\epsilon (r){\rm{d}}r\\ +{\int }_{0}^{t}\left(2\varepsilon {{\rm{e}}}^{2\varepsilon r}{\int }_{r-\delta }^{r}{\epsilon }^{{\rm{T}}}(\rho )Q\epsilon (\rho ){\rm{d}}\rho \right){\rm{d}}r\\ -{\int }_{0}^{t}{{\rm{e}}}^{2\varepsilon r}{\epsilon }^{{\rm{T}}}(r)S\epsilon (r){\rm{d}}r+{\int }_{0}^{t}{{\rm{e}}}^{2\varepsilon r}{\omega }^{{\rm{T}}}(r)R\omega (r){\rm{d}}r.\end{array}\end{eqnarray}$
From the second term on the right hand side of (19), it can be calculated that
$\begin{eqnarray*}\begin{array}{l}{\int }_{0}^{t}\left({\int }_{r-\delta }^{r}2\varepsilon {{\rm{e}}}^{2\varepsilon r}{\epsilon }^{{\rm{T}}}(\rho )Q\epsilon (\rho ){\rm{d}}\rho \right){\rm{d}}r\\ \leqslant \,\,{\int }_{-\delta }^{t}\left({\int }_{\rho }^{\rho +\delta }2\varepsilon {{\rm{e}}}^{2\varepsilon r}{\epsilon }^{{\rm{T}}}(\rho )Q\epsilon (\rho ){\rm{d}}r\right){\rm{d}}\rho \\ \leqslant \,{\int }_{-\delta }^{0}({{\rm{e}}}^{2\varepsilon \delta }-1){\epsilon }^{{\rm{T}}}(\rho )Q\epsilon (\rho ){\rm{d}}\rho \\ +\,{\int }_{0}^{t}({{\rm{e}}}^{2\varepsilon \delta }-1){{\rm{e}}}^{2\varepsilon \rho }{\epsilon }^{{\rm{T}}}(\rho )Q\epsilon (\rho ){\rm{d}}\rho .\end{array}\end{eqnarray*}$
Substituting the above inequality into (19), we can obtain
$\begin{eqnarray}\begin{array}{l}V(t)\leqslant \left[{\int }_{0}^{t}\left(2\varepsilon {{\rm{e}}}^{2\varepsilon \rho }{\epsilon }^{{\rm{T}}}\right.\right.\\ \left.(\rho )P\epsilon (\rho )+({{\rm{e}}}^{2\varepsilon \delta }-1){{\rm{e}}}^{2\varepsilon \rho }{\epsilon }^{{\rm{T}}}(\rho )Q\epsilon (\rho )\\ \left.-\ {{\rm{e}}}^{2\varepsilon \rho }{\epsilon }^{{\rm{T}}}(\rho )S\epsilon (\rho )\right){\rm{d}}\rho \\ +\,{{\rm{e}}}^{2\varepsilon \delta }{\int }_{-\delta }^{0}{\epsilon }^{{\rm{T}}}(\rho )Q\epsilon (\rho ){\rm{d}}\rho +{\epsilon }^{{\rm{T}}}(0)P\epsilon (0)\\ \left.\ +\,{\mu }^{-1}\displaystyle \sum _{j=1}^{p}{\left({\breve{\phi }}_{j}(0)-{\phi }_{j}\right)}^{2}+{\nu }^{-1}\displaystyle \sum _{j=1}^{q}{\left({\breve{\psi }}_{j}(0)-{\psi }_{j}\right)}^{2}\right]\\ {{\rm{e}}}^{-2\varepsilon t}+\frac{1-{{\rm{e}}}^{-2\varepsilon t}}{2\varepsilon }{\lambda }_{M}(R)\mathop{\sup }\limits_{\rho \in [0,t]}{\parallel \omega (\rho )\parallel }^{2}\\ \leqslant \,\left[,[,\left(2\varepsilon {\lambda }_{M}(P)+({{\rm{e}}}^{2\varepsilon \delta }-1){\lambda }_{M}(Q)-{\lambda }_{m}(S)\right)\right.\\ {\int }_{0}^{t}{{\rm{e}}}^{2\varepsilon \rho }{\epsilon }^{{\rm{T}}}(\rho )\epsilon (\rho ){\rm{d}}\rho +{{\rm{e}}}^{2\varepsilon \delta }{\int }_{-\delta }^{0}{\epsilon }^{{\rm{T}}}(\rho )Q\epsilon (\rho ){\rm{d}}\rho \\ +\,{\lambda }_{M}(P){\parallel \epsilon (0)\parallel }^{2}+{\mu }^{-1}\displaystyle \sum _{j=1}^{p}{\left({\breve{\phi }}_{j}(0)-{\phi }_{j}\right)}^{2}\\ +\,{\nu }^{-1}\displaystyle \sum _{j=1}^{q}{\left({\breve{\psi }}_{j}(0)-{\psi }_{j}\right)}^{2}\right]{{\rm{e}}}^{-2\varepsilon t}\\ +\,\frac{{\lambda }_{M}(R)}{2\varepsilon }\mathop{\sup }\limits_{\rho \in [0,t]}{\parallel \omega (\rho )\parallel }^{2}.\end{array}\end{eqnarray}$
On the basis of (10), it follows by (20) that
$\begin{eqnarray}\begin{array}{l}V(t)\leqslant \left[{{\rm{e}}}^{2\varepsilon \delta }{\int }_{-\delta }^{0}{\epsilon }^{{\rm{T}}}(\rho )Q\epsilon (\rho ){\rm{d}}\rho +{\lambda }_{M}(P){\parallel \epsilon (0)\parallel }^{2}\right.\\ +\,\left.{\mu }^{-1}\displaystyle \sum _{j=1}^{p}{\left({\breve{\phi }}_{j}(0)-{\phi }_{j}\right)}^{2}+{\nu }^{-1}\displaystyle \sum _{j=1}^{q}{\left({\breve{\psi }}_{j}(0)-{\psi }_{j}\right)}^{2}\right]\\ {{\rm{e}}}^{-2\varepsilon t}+\frac{{\lambda }_{M}(R)}{2\varepsilon }\mathop{\sup }\limits_{\rho \in [0,t]}{\parallel \omega (\rho )\parallel }^{2}.\end{array}\end{eqnarray}$
On the other hand, it is effortless to get
$\begin{eqnarray}{\lambda }_{m}(P){\parallel \epsilon (t)\parallel }^{2}\leqslant V(t).\end{eqnarray}$
Now, using (21), (22) and lemma 2, we can get (6), where
$\begin{eqnarray*}\beta \left(t\right)=\sqrt{\displaystyle \frac{{{ \mathcal C }}_{0}}{{\lambda }_{m}(P)}}{{\rm{e}}}^{-\varepsilon t},\gamma \left(\rho \right)=\sqrt{\displaystyle \frac{{\lambda }_{M}(R)}{2\varepsilon {\lambda }_{m}(P)}}\mathop{\sup }\limits_{\rho \in [0,t]}\parallel \omega (\rho )\parallel \end{eqnarray*}$
with
$\begin{eqnarray*}\begin{array}{l}{{ \mathcal C }}_{0}=\left({{\rm{e}}}^{2\varepsilon \delta }\delta {\lambda }_{\max }(Q)+{\lambda }_{\max }(P)\right){\left(\mathop{\sup }\limits_{\rho \in [-\delta ,0]}\parallel \epsilon (\rho )\parallel \right)}^{2}\\ +{\mu }^{-1}\sum _{j=1}^{p}{\left({\breve{\phi }}_{j}(0)-{\phi }_{j}\right)}^{2}+{\nu }^{-1}\sum _{j=1}^{q}{\left({\breve{\psi }}_{j}(0)-{\psi }_{j}\right)}^{2}.\end{array}\end{eqnarray*}$
Therefore, system (5) is ISS and the proof is finished.

When Ω(t) ≡ 0, it can be seen from the above proof that system (5) is exponentially stable with decay rate ϵ under the conditions of theorem 1.

Next, attention will be concentrated on the no parameter uncertainties case (i.e. Øjψj ≡ 0). In this case, system (5) becomes
$\begin{eqnarray}\begin{array}{rcl}\dot{\epsilon }(t) & = & ({ \mathcal A }+K{ \mathcal C })\epsilon (t)+{{ \mathcal A }}_{\delta }\epsilon (t-\delta )+{ \mathcal B }f\left({ \mathcal H }\epsilon (t)\right)\\ & & +{{ \mathcal B }}_{\delta }g\left({ \mathcal H }\epsilon (t-\delta )\right)+{ \mathcal E }\omega (t).\end{array}\end{eqnarray}$
And one can write the following results:

System (23) is ISS if there exist scalars θ1 > 0, θ2 > 0 and matrices P, Q, R, $S\in {{\mathbb{S}}}_{+}^{n}$ such that

$\begin{eqnarray}\left[\begin{array}{ccccc}{{\rm{\Xi }}}_{1} & P{{ \mathcal A }}_{\delta } & P{ \mathcal E } & P{ \mathcal B } & P{{ \mathcal B }}_{\delta }\\ * & {\theta }_{2}{{ \mathcal H }}^{{\rm{T}}}{L}_{g}^{{\rm{T}}}{L}_{g}{ \mathcal H }-Q & 0 & 0 & 0\\ * & * & -R & 0 & 0\\ * & * & * & -{\theta }_{1}I & 0\\ * & * & * & * & -{\theta }_{2}I\end{array}\right]\lt 0,\end{eqnarray}$
where
$\begin{eqnarray*}{{\rm{\Xi }}}_{1}={\mathfrak{H}}e\left(P{ \mathcal A }+{PK}{ \mathcal C }\right)+{\theta }_{1}{{ \mathcal H }}^{{\rm{T}}}{L}_{f}^{{\rm{T}}}{L}_{f}{ \mathcal H }+Q+S.\end{eqnarray*}$

Proof. Let us select a Lyapunov function as
$\begin{eqnarray}V(t)={\epsilon }^{{\rm{T}}}(t)P\epsilon (t)+{\int }_{t-\delta }^{t}{\epsilon }^{{\rm{T}}}(\rho )Q\epsilon (\rho ){\rm{d}}\rho .\end{eqnarray}$
Then, along parallel lines as the proof of theorem 1, one can readily reveal that system (23) is ISS for any bounded interference Ω(t).
In [16], the ISS filtering issue for delayed nonlinear systems was considered. With the application of a more complicated Lyapunov function as
$\begin{eqnarray*}\begin{array}{rcl}V(t) & = & {\epsilon }^{{\rm{T}}}(t)P\epsilon (t)+{\int }_{t-\delta }^{t}{\epsilon }^{{\rm{T}}}(\rho )Q\epsilon (\rho ){\rm{d}}\rho \\ & & +\ {\int }_{t-\delta }^{t}\left(\rho -t+\delta \right){\epsilon }^{{\rm{T}}}(\rho )R\epsilon (\rho ){\rm{d}}\rho \\ & & +{\left[{\int }_{t-\delta }^{t}\epsilon (\rho ){\rm{d}}\rho \right]}^{{\rm{T}}}U\left[{\int }_{t-\delta }^{t}\epsilon (\rho ){\rm{d}}\rho \right],\end{array}\end{eqnarray*}$
together with the analysis approach therein, the following criterion concerning ISS of system (23) was obtained:

[16] System (23) is ISS if there exist matrices P, Q, R, S1, S2, $U\in {{\mathbb{S}}}_{+}^{n}$ such that

$\begin{eqnarray}\left[\begin{array}{cccccc}{{\rm{\Lambda }}}_{1} & P{{ \mathcal A }}_{\delta } & U & P{ \mathcal E } & P{ \mathcal B } & P{{ \mathcal B }}_{\delta }\\ * & {{ \mathcal H }}^{{\rm{T}}}{L}_{g}^{{\rm{T}}}{L}_{g}{ \mathcal H }-Q & -U & 0 & 0 & 0\\ * & * & -\frac{1}{2\delta }{S}_{2} & 0 & 0 & 0\\ * & * & * & -R & 0 & 0\\ * & * & * & * & -I & 0\\ * & * & * & * & * & -I\end{array}\right]\lt 0,\end{eqnarray}$
where
$\begin{eqnarray*}{{\rm{\Lambda }}}_{1}={\mathfrak{H}}e\left(P{ \mathcal A }+{PK}{ \mathcal C }\right)+{{ \mathcal H }}^{{\rm{T}}}{L}_{f}^{{\rm{T}}}{L}_{f}{ \mathcal H }+\delta {S}_{2}+Q+{S}_{1}.\end{eqnarray*}$

With the aid of Schur's complement, it is not difficult to see that (24) is a necessary condition for establishing (26), which means that the present ISS analysis approach is less conservative than that proposed in [16].

Now we are in a position to present our design method for the adaptive synchronization controller in (4) via the following theorem.

Suppose that there are scalars θ1 > 0, θ2 > 0, matrices P, Q, R, $S\in {{\mathbb{S}}}_{+}^{n}$, and a matrix $M\in {{\mathbb{R}}}^{n\times m}$ such that

$\begin{eqnarray}\left[\begin{array}{ccccc}{{\rm{\Xi }}}_{1} & P{{ \mathcal A }}_{\delta } & P{ \mathcal E } & P{ \mathcal B } & P{{ \mathcal B }}_{\delta }\\ * & {\theta }_{2}{{ \mathcal H }}^{{\rm{T}}}{L}_{g}^{{\rm{T}}}{L}_{g}{ \mathcal H }-Q & 0 & 0 & 0\\ * & * & -R & 0 & 0\\ * & * & * & -{\theta }_{1}I & 0\\ * & * & * & * & -{\theta }_{2}I\end{array}\right]\lt 0,\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}{{\rm{\Xi }}}_{1} & = & {\mathfrak{H}}e\left(P{ \mathcal A }+M{ \mathcal C }\right)+{\theta }_{1}{{ \mathcal H }}^{{\rm{T}}}{L}_{f}^{{\rm{T}}}{L}_{f}{ \mathcal H }+Q+S,\\ {L}_{f} & = & \mathrm{diag}\left\{{L}_{f1},\cdots ,{L}_{\mathrm{fm}}\right\},\,\,{L}_{g}=\mathrm{diag}\left\{{L}_{g1},\cdots ,{L}_{\mathrm{gm}}\right\}.\end{array}\end{eqnarray*}$
Then, under the adaptive controller in (4) with gain K = P−1M as well as updating laws (8) and (9), systems (1) and (2) are ISS synchronized.

Proof. With PK=M, the inequality of (7) can be rewritten as that of (27). Thus, systems (1 ) and (2) are ISS synchronized according to definition 2.

Once the LMIs in theorem 2 are feasible, one can obtain the feedback gain K as well as the estimates of the uncertain parameters ${\phi }_{j}$ and ψj simultaneously. Note that there are efficient numerical algorithms available to check the feasibility of LMIs, such as alternating projection method, the ellipsoid method, and the interior-point method. Thus, the present design method of adaptive controller in (4) for ISS synchronization is numerically tractable.

4. Example

The section provides an example with simulations to show the applicability and superiority of the analysis and design approach.

Consider the drive and response Lur'e systems in (1) and (2) subject to parameters

$\begin{eqnarray*}\begin{array}{rcl}{ \mathcal A } & = & \left[\begin{array}{ccc}-\displaystyle \frac{18}{7} & 9 & 0\\ 1 & -1 & 1\\ 0 & -14.286 & 0\end{array}\right],\\ {{ \mathcal A }}_{\delta } & = & \left[\begin{array}{ccc}-0.1 & 0 & 0\\ -0.1 & 0 & 0\\ 0.2 & 0 & -0.1\end{array}\right],\,{ \mathcal B }=\left[\begin{array}{ccc}\displaystyle \frac{27}{7} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{array}\right],\\ {{ \mathcal B }}_{\delta } & = & \left[\begin{array}{ccc}0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{array}\right],\,{{ \mathcal E }}_{1}=\left[\begin{array}{c}-1\\ 0\\ 0\end{array}\right],\,{{ \mathcal E }}_{2}=\left[\begin{array}{c}0\\ 1\\ 0\end{array}\right],\\ { \mathcal C } & = & {\left[\begin{array}{c}1\\ 0\\ 0\end{array}\right]}^{{\rm{T}}},\,{ \mathcal H }=\left[\begin{array}{ccc}1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{array}\right],\,\\ {\zeta }_{1}(t) & = & \left[\begin{array}{c}{\zeta }_{11}(t)\\ {\zeta }_{12}(t)\\ {\zeta }_{13}(t)\end{array}\right],\,{{\rm{\Phi }}}_{1}({\zeta }_{1}(t))=\left[\begin{array}{c}F\left({ \mathcal H }{\zeta }_{11}(t)\right)\\ 0\\ 0\end{array}\right],\\ {{\rm{\Psi }}}_{1}({\zeta }_{1}(t)) & = & \left[\begin{array}{c}G\left({ \mathcal H }{\zeta }_{11}(t)\right)\\ 0\\ 0\end{array}\right]\\ F\left({ \mathcal H }{\zeta }_{11}(t)\right) & = & G\left({ \mathcal H }{\zeta }_{11}(t)\right)=\displaystyle \frac{1}{2}\left(\left|{\zeta }_{11}(t)+1\right|-\left|{\zeta }_{11}(t)-1\right|\right),\\ F\left({ \mathcal H }{\zeta }_{12}(t)\right) & = & F\left({ \mathcal H }{\zeta }_{13}(t)\right)=G\left({ \mathcal H }{\zeta }_{12}(t)\right)=G\left({ \mathcal H }{\zeta }_{13}(t)\right)=0,\\ \omega (t) & = & 0.2\sin (10t),p\,=\,1,\,q\,=\,1.\end{array}\end{eqnarray*}$
Notice Assumption 1 is satisfied with ${L}_{f}={L}_{g}={\rm{diag}}\{1,0,0\}.$

When Øjψj ≡ 0, (i.e. there are no parameter uncertainties), then the system considered in this example can be viewed as a time-delay Chua's circuit [35]. For this situation, both proposition 1 and corollary 1 can be used to check the ISS of the SES. However, as theoretically explained in remark 5, the former is much conservative than the latter. To illustrate this, let us consider the case that $K=k{[\begin{array}{ccc}1 & 1 & 1\end{array}]}^{{\rm{T}}}$. Then, it can be verified that the LMIs in proposition 1 hold true for k ≤ −3.062, while, by corollary 1, it is observed that the ISS can be ensured even for k ∈ [ −3.062, −1.651].
Next, let us show the applicability of our design approach. Solving the LMIs in theorem 2, we can obtain a feasible solution, where
$\begin{eqnarray*}\begin{array}{rcl}P & = & \left[\begin{array}{ccc}16.4135 & -21.0625 & 2.4124\\ -21.0625 & 78.6244 & -10.4966\\ 2.4124 & -10.4966 & 7.1752\end{array}\right],\\ M & = & \left[\begin{array}{c}-128.7534\\ -212.3368\\ 31.7822\end{array}\right],\\ Q & = & \left[\begin{array}{ccc}109.8950 & -0.0001 & -0.1741\\ -0.0001 & 51.7207 & 1.1786\\ -0.1741 & 1.1786 & 9.7692\end{array}\right],\,R=\begin{array}{c}95.3604\end{array},\\ S & = & \left[\begin{array}{ccc}67.6844 & 0.0000 & 0.0000\\ 0.0000 & 41.8412 & 1.0287\\ 0.0000 & 1.0287 & 5.3038\end{array}\right],\\ {\theta }_{1} & = & 99.2800,\,{\theta }_{2}=61.2565.\end{array}\end{eqnarray*}$
Therefore, according to theorem 2, the ISS synchronization of the drive and response systems can be ensured under the controller in (4) with feedback gain
$\begin{eqnarray}K={P}^{-1}M={\left[\begin{array}{ccc}-17.2568 & -7.4035 & -0.5991\end{array}\right]}^{{\rm{T}}}\end{eqnarray}$
as well as updating laws in (8) and (9).
The simulations are carried out in MATLAB R2020b. As in [36], we consider the case when the uncertain parameters have different orders of magnitude. More specifically, the following two cases will be examined: Case A. Ø1 = 0.02, ψ1 = − 0.005; Case B. Ø1 = − 0.75, ψ1 = − 0.075. Under initial condition
$\begin{eqnarray*}{\zeta }_{1}(\rho )={\left[-0.2-0.30.2\right]}^{{\rm{T}}},\,\rho \in [-\delta ,0],\,\,\delta =1,\end{eqnarray*}$
figure 1 shows the chaotic behavior of drive system (1) for Case A. For Case B, the chaotic behavior is similar to figure 1 and therefore omitted herein for brevity.
Figure 1. Chaotic behavior.
Next, set μ = 0.1, ν = 0.1, $\varepsilon =0.001,\,{\breve{\phi }}_{1}(0)=-0.5$, ${\breve{\psi }}_{1}(0)=0.3$, and randomly choose the initial value of response system (2) between −1 and 1 as follows:
$\begin{eqnarray*}{\zeta }_{2}(\rho )={\left[\begin{array}{ccc}-0.7613 & -0.1478 & 0.5349\end{array}\right]}^{{\rm{T}}},\,\rho \in [-1,0].\end{eqnarray*}$
Figures 2 and 3 show the state of the SES and the estimates ${\breve{\phi }}_{1}(t)$, ${\breve{\psi }}_{1}(t)$ of Ø1, ψ1 with exterior interference for Case A and Case B, respectively; figures 4 and 5 further show the trajectories in the absence of exterior interference. It is found from these figures that the SES based on the designed adaptive controller is state-bounded under the bounded interference and quickly convergent in the absence of interference. Therefore, the simulations coincide with the present theoretical results.
Figure 2. Trajectories of i(t)(i = 1, 2, 3), ${\breve{\phi }}_{1}(t)$, and ${\breve{\psi }}_{1}(t)$ when (Ø1, ψ1) = (0.02, −0.005).
Figure 3. Trajectories of i(t)(i = 1, 2, 3), ${\breve{\phi }}_{1}(t)$, and ${\breve{\psi }}_{1}(t)$ when (Ø1, ψ1) = ( − 0.75, −0.075).
Figure 4. Trajectories of i(t)(i = 1, 2, 3), ${\breve{\phi }}_{1}(t)$, and ${\breve{\psi }}_{1}(t)$ when (Ø1, ψ1) = (0.02, −0.005) and Ω(t) ≡ 0.
Figure 5. Trajectories of i(t)(i = 1, 2, 3), ${\breve{\phi }}_{1}(t)$, and ${\breve{\psi }}_{1}(t)$ when (Ø1, ψ1) = ( − 0.75, −0.075) and Ω(t) ≡ 0.

5. Conclusions

In this paper, the issue of adaptive ISS synchronization of time-delay Lur'e systems has been studied, where the exterior interference and parameter uncertainties have been considered simultaneously. With the aid of a Lyapunov function and some inequality techniques, a co-design of the feedback gain and estimates of the uncertain parameters has been proposed to determine the desired adaptive synchronization controller. For showing the applicability and superiority of the analysis and design approaches, an example with simulations has been given.

This work was supported by the Natural Science Foundation of the Anhui Higher Education Institutions (Grant No. KJ2020A0248), the National Natural Science Foundation of China (Grant Nos. 61806004 and 61503002), and the Open Project of Anhui Province Key Laboratory of Special and Heavy Load Robot (Grant No. TZJQR005-2020).

1
Bowong S Kakmeni F M M Koina R 2004 A new synchronization principle for a class of Lur'e systems with applications in secure communication Int. J. Bifurcation Chaos 14 2477 2491

DOI

2
Volos C K Kyprianidis I M Stouboulos I N 2013 Image encryption process based on chaotic synchronization phenomena Signal Process. 93 1328 1340

DOI

3
Bouridah M S Bouden T Yalçin M E 2020 Chaos synchronization of fractional-order Lur'e systems Int. J. Bifurcation Chaos 30 2050206

DOI

4
Huang Y Bao H 2020 Master-slave synchronization of complex-valued delayed chaotic Lur'e systems with sampled-data control Appl. Math. Comput. 379 125261

DOI

5
Park J H Lee T H Liu Y Chen J 2019 Dynamic Systems with Time Delays: Stability and Control Singapore Springer

DOI

6
Kwon W Koo B Lee S M 2018 Integral-based event-triggered synchronization criteria for chaotic Lur'e systems with networked PD control Nonlinear Dyn. 94 991 1002

DOI

7
Dong Y Xian J 2016 Finite-time quasi-synchronization of two nonidentical chaotic systems via intermittent control Commun. Theor. Phys. 66 306

DOI

8
Aguilar L Orlov Y Pisano A 2020 Leader-follower synchronization and ISS analysis for a network of boundary-controlled wave PDEs IEEE Control Syst. Lett. 5 683 688

DOI

9
Li C Zhang J 2016 Synchronisation of a fractional-order chaotic system using finite-time input-to-state stability Int. J. Syst. Sci. 47 2440 2448

DOI

10
Chen D Yang G Han Z 2012 Impulsive observer for input-to-state stability based synchronization of Lur'e differential inclusion system Commun. Nonlinear Sci. Numer. Simul. 17 2990 2996

DOI

11
Ahn C K 2010 Robust chaos synchronization using input-to-state stable control Pramana 74 705 718

DOI

12
Tao G 2003 Adaptive Control Design and Analysis New York Wiley

DOI

13
Li T Yuan R Fei S Ding Z 2018 Sampled-data synchronization of chaotic Lur'e systems via an adaptive event-triggered approach Inf. Sci. 462 40 54

DOI

14
Tang Z Park J H Feng J 2018 Novel approaches to pin cluster synchronization on complex dynamical networks in Lur'e forms Commun. Nonlinear Sci. Numer. Simul. 57 422 438

DOI

15
Abd M H Tahir F R Al-Suhail G A Pham V T 2017 An adaptive observer synchronization using chaotic time-delay system for secure communication Nonlinear Dyn. 90 2583 2598

DOI

16
Ahn C K 2013 Input-to-state stable nonlinear filtering for a class of continuous-time delayed nonlinear systems Int. J. Control 86 1179 1185

DOI

17
Li Z Duan Z Chen G 2011 Global synchronised regions of linearly coupled Lur'e systems Int. J. Control 84 216 227

DOI

18
Bao H Park J H Cao J Adaptive synchronization of fractional-order output-coupling neural networks via quantized output control IEEE Trans. Neural Netw. Learn. Syst.

DOI

19
Qi X Bao H Cao J 2020 Synchronization criteria for quaternion-valued coupled neural networks with impulses Neural Netw. 128 150 157

DOI

20
Liu Y Lee S M 2016 Synchronization criteria of chaotic Lur'e systems with delayed feedback PD control Neurocomputing 189 66 71

DOI

21
Li Q Liu S 2018 Switching event-triggered network-synchronization for chaotic systems with different dimensions Neurocomputing 311 32 40

DOI

22
Zhou J Liu Y Xia J Wang Z Arik S 2020 Resilient fault-tolerant anti-synchronization for stochastic delayed reaction-diffusion neural networks with semi-Markov jump parameters Neural Netw. 125 194 204

DOI

23
Park J M Park P G 2018 ${{ \mathcal H }}_{\infty }$ sampled-state feedback control for synchronization of chaotic Lur'e systems with time delays J. Franklin Inst. 355 8005 8026

DOI

24
Duan W Li Y Sun Y Chen J Yang X 2020 Enhanced master-slave synchronization criteria for chaotic Lur'e systems based on time-delayed feedback control Math. Comput. Simul. 177 276 294

DOI

25
Rao Y Tong D Chen Q Zhou W Xu Y 2021 Synchronization of chaotic Lur'e systems with time-delays via quantized output feedback control Trans. Inst. Meas. Control 43 933 944

DOI

26
Zhao M Liu R Gao Y 2017 Dissipative lag synchronization of chaotic Lur'e systems with unknown disturbances IMA J. Math. Control Inf. 34 123 138

DOI

27
Chen Y Zhang Z Liu Y Zhou J Wang Z 2020 Resilient input-to-state stable filter design for nonlinear time-delay systems Commun. Nonlinear Sci. Numer. Simul. 89 105335

DOI

28
Yang Z Zhou W Huang T 2014 Exponential input-to-state stability of recurrent neural networks with multiple time-varying delays Cogn. Neurodyn. 8 47 54

DOI

29
Zhou Y Liu Y Zhou J Wang Z 2021 Quantized passive filtering for switched delayed neural networks Nonlinear Anal.: Modelling Control 26 93 112

DOI

30
Arik S 2020 New criteria for stability of neutral-type neural networks with multiple time delays IEEE Trans. Neural Netw. Learn. Syst. 31 1504 1513

DOI

31
Huang X Zhou Y Kong Q Zhou J Fang M 2020 ${{ \mathcal H }}_{\infty }$ synchronization of chaotic Hopfield networks with time-varying delay: a resilient DOF control approach Commun. Theor. Phys. 72 015003

DOI

32
Tai W Zuo D Xuan Z Zhou J Wang Z 2021 Non-fragile ${{ \mathcal L }}_{2}-{{ \mathcal L }}_{\infty }$ filtering for a class of switched neural networks Math. Comput. Simul. 185 629 645

DOI

33
Sakthivel R Wang C Santra S Kaviarasan B 2018 Non-fragile reliable sampled-data controller for nonlinear switched time-varying systems Nonlinear Anal. Hybrid Syst. 27 62 76

DOI

34
Zhou K Khargonekar P P 1988 Robust stabilization of linear systems with norm-bounded time-varying uncertainty Syst. Control Lett. 10 17 20

DOI

35
Lu J Cao J Ho D W C 2008 Adaptive stabilization and synchronization for chaotic Lur'e systems with time-varying delay IEEE Trans. Circuits Syst. I: Regular Papers 55 1347 1356

DOI

36
Wang C Ma J Jin W 2012 Identification of parameters with different orders of magnitude in chaotic systems Dyn. Syst. 27 253 270

DOI

Outlines

/